Gancedo JM. The early steps of glucose signalling in yeast. FEMS Microbiol rev. 2008;32(4):673–704.

Article
CAS
PubMed
Google Scholar

Gancedo JM. Yeast carbon catabolite repression. Microbiol Mol Biol rev. 1998;62(2):334–61.

CAS
PubMed
PubMed Central
Google Scholar

Özcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol rev. 1999;63(3):554–69.

PubMed
PubMed Central
Google Scholar

Reifenberger E, Boles E, Ciriacy M. Kinetic characterization of individual hexose transporters of *Saccharomyces cerevisiae* and their relation to the triggering mechanisms of glucose repression. Eur J Biochem/FEBS. 1997;245(2):324–33.

Article
CAS
Google Scholar

Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast *Saccharomyces cerevisiae*. FEMS Microbiol rev. 2014;38(2):254–99.

Article
CAS
PubMed
PubMed Central
Google Scholar

Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192(1):73–105.

Article
PubMed
PubMed Central
Google Scholar

Schmidt MC. McCartney RR: beta-subunits of Snf1 kinase are required for kinase function and substrate definition. Embo j. 2000;19(18):4936–43.

Article
CAS
PubMed
PubMed Central
Google Scholar

Jiang R, Carlson M. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol. 1997;17(4):2099–106.

Article
CAS
PubMed
PubMed Central
Google Scholar

Rose M, Albig W, Entian KD. Glucose repression in *Saccharomyces cerevisiae* is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur J Biochem/FEBS. 1991;199(3):511–8.

Article
CAS
Google Scholar

Garcia-Salcedo R, Lubitz T, Beltran G, Elbing K, Tian Y, Frey S, et al. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps. FEBS J. 2014;281(7):1901–17.

Article
CAS
PubMed
Google Scholar

Zhang Y, McCartney RR, Chandrashekarappa DG, Mangat S, Schmidt MC. Reg1 protein regulates phosphorylation of all three Snf1 isoforms but preferentially associates with the Gal83 isoform. Eukaryot Cell. 2011;10(12):1628–36.

Article
CAS
PubMed
PubMed Central
Google Scholar

Bendrioua L, Smedh M, Almquist J, Cvijovic M, Jirstrand M, Goksor M, et al. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem. 2014;289(18):12863–75.

Article
CAS
PubMed
PubMed Central
Google Scholar

Dalal CK, Cai L, Lin Y, Rahbar K, Elowitz MB. Pulsatile dynamics in the yeast proteome. Curr Biol. 2014;24(18):2189–94.

Article
CAS
PubMed
PubMed Central
Google Scholar

Klipp E. Modelling dynamic processes in yeast. Yeast (Chichester, England). 2007;24(11):943–59.

Article
CAS
Google Scholar

Neves SR, Iyengar R. Modeling of signaling networks. Bioessays. 2002;24(12):1110–7.

Article
CAS
PubMed
Google Scholar

Klipp E, Nordlander B, Kruger R, Gennemark P, Hohmann S. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol. 2005;23(8):975–82.

Article
CAS
PubMed
Google Scholar

Kofahl B, Klipp E. Modelling the dynamics of the yeast pheromone pathway. Yeast (Chichester, England). 2004;21(10):831–50.

Article
CAS
Google Scholar

Klipp E, Schaber J: Modelling of signal transduction in yeast – sensitivity and model analysis. In: Understanding and exploiting systemy biology in bioprocesses and biomedicine*.* Edited by In M. Cánovas JLI, & A. Manjón: Murcia: Fundación Cajamurcia.; 2006: 15-30.

Klipp E, Liebermeister W. Mathematical modeling of intracellular signaling pathways. BMC Neurosci. 2006;7(Suppl 1):S10.

Article
PubMed
PubMed Central
Google Scholar

Karlsson M, Janzen DL, Durrieu L, Colman-Lerner A, Kjellsson MC, Cedersund G. Nonlinear mixed-effects modelling for single cell estimation: when, why, and how to use it. BMC Syst Biol. 2015;9:52.

Article
PubMed
PubMed Central
Google Scholar

Niepel M, Spencer SL, Sorger PK. Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr Opin Chem Biol. 2009;13(5-6):556–61.

Article
CAS
PubMed
PubMed Central
Google Scholar

Ribba B, Holford NH, Magni P, Troconiz I, Gueorguieva I, Girard P, et al. A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacometrics Syst Pharmacol. 2014;3:e113.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zechner C, Unger M, Pelet S, Peter M, Koeppl H. Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat Methods. 2014;11(2):197–202.

Article
CAS
PubMed
Google Scholar

Almquist J, Bendrioua L, Adiels CB, Goksor M, Hohmann S, Jirstrand M. A nonlinear mixed effects approach for modeling the cell-to-cell variability of Mig1 dynamics in yeast. PLoS One. 2015;10(4):e0124050.

Article
PubMed
PubMed Central
Google Scholar

Eriksson E, Sott K, Lundqvist F, Sveningsson M, Scrimgeour J, Hanstorp D, et al. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip. 2010;10(5):617–25.

Article
CAS
PubMed
Google Scholar

Treitel MA, Kuchin S, Carlson M. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in *Saccharomyces cerevisiae*. Mol Cell Biol. 1998;18(11):6273–80.

Article
CAS
PubMed
PubMed Central
Google Scholar

DeVit MJ, Johnston M. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of *Saccharomyces cerevisiae*. Curr Biol. 1999;9(21):1231–41.

Article
CAS
PubMed
Google Scholar

Elbing K, Stahlberg A, Hohmann S, Gustafsson L. Transcriptional responses to glucose at different glycolytic rates in *Saccharomyces cerevisiae*. Eur J Biochem/FEBS. 2004;271(23-24):4855–64.

Article
CAS
Google Scholar

Elbing K, Larsson C, Bill RM, Albers E, Snoep JL, Boles E, et al. Role of hexose transport in control of glycolytic flux in *Saccharomyces cerevisiae*. Appl Environ Microbiol. 2004;70(9):5323–30.

Article
CAS
PubMed
PubMed Central
Google Scholar

Lin Y, Sohn CH, Dalal CK, Cai L, Elowitz MB. Combinatorial gene regulation by modulation of relative pulse timing. Nature. 2015;527(7576):54–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Krampe S, Stamm O, Hollenberg CP, Boles E. Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of *Saccharomyces cerevisiae* occurs in the vacuole after internalization by endocytosis. FEBS Lett. 1998;441(3):343–7.

Article
CAS
PubMed
Google Scholar

Snowdon C, Hlynialuk C, van der Merwe G. Components of the Vid30c are needed for the rapamycin-induced degradation of the high-affinity hexose transporter Hxt7p in *Saccharomyces cerevisiae*. FEMS Yeast res. 2008;8(2):204–16.

Article
CAS
PubMed
Google Scholar

Snowdon C, van der Merwe G. Regulation of Hxt3 and Hxt7 turnover converges on the Vid30 complex and requires inactivation of the Ras/cAMP/PKA pathway in *Saccharomyces cerevisiae*. PLoS One. 2012;7(12):e50458.

Article
CAS
PubMed
PubMed Central
Google Scholar

Roy A, Kim YB, Cho KH, Kim JH. Glucose starvation-induced turnover of the yeast glucose transporter Hxt1. Biochim Biophys Acta. 2014;1840(9):2878–85.

Article
CAS
PubMed
PubMed Central
Google Scholar

Raser JM, O'Shea EK. Control of stochasticity in eukaryotic gene expression. Science. 2004;304(5678):1811–4.

Article
CAS
PubMed
PubMed Central
Google Scholar

Schwabe A, Bruggeman FJ. Single yeast cells vary in transcription activity not in delay time after a metabolic shift. Nat Commun. 2014;5:4798.

Article
CAS
PubMed
Google Scholar

Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472(7342):230–3.

Article
CAS
PubMed
PubMed Central
Google Scholar

Mayer FV, Heath R, Underwood E, Sanders MJ, Carmena D, McCartney RR, et al. ADP regulates SNF1, the *Saccharomyces cerevisiae* homolog of AMP-activated protein kinase. Cell Metab. 2011;14(5):707–14.

Article
CAS
PubMed
PubMed Central
Google Scholar

Chandrashekarappa DG, McCartney RR, Schmidt MC. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation. J Biol Chem. 2011;286(52):44532–41.

Article
CAS
PubMed
PubMed Central
Google Scholar

Chandrashekarappa DG, McCartney RR, Schmidt MC. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation. J Biol Chem. 2013;288(1):89–98.

Article
CAS
PubMed
Google Scholar

Bosch D, Johansson M, Ferndahl C, Franzen CJ, Larsson C, Gustafsson L. Characterization of glucose transport mutants of *Saccharomyces cerevisiae* during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. FEMS Yeast res. 2008;8(1):10–25.

Article
CAS
PubMed
Google Scholar

Ye L, Kruckeberg AL, Berden JA, van Dam K. Growth and glucose repression are controlled by glucose transport in *Saccharomyces cerevisiae* cells containing only one glucose transporter. J Bacteriol. 1999;181(15):4673–5.

CAS
PubMed
PubMed Central
Google Scholar

Meijer MM, Boonstra J, Verkleij AJ, Verrips CT. Glucose repression in *Saccharomyces cerevisiae* is related to the glucose concentration rather than the glucose flux. J Biol Chem. 1998;273(37):24102–7.

Article
CAS
PubMed
Google Scholar

Vega M, Riera A, Fernandez-Cid A, Herrero P, Moreno F. Hexokinase 2 is an intracellular glucose sensor of yeast cells that maintains the structure and activity of Mig1 repressor complex. J Biol Chem. 2016;291(14):7267–85.

Moreno F, Vega M, Herrero P. The nuclear Hexokinase 2 acts as a glucose sensor in *Saccharomyces cerevisiae*. J Biol Chem. 2016;291(32):16478.

Article
CAS
PubMed
Google Scholar

van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJ, Planque R, et al. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science. 2014;343(6174):1245114.

Article
PubMed
Google Scholar

Conrad NK, Wilson SM, Steinmetz EJ, Patturajan M, Brow DA, Swanson MS, et al. A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics. 2000;154(2):557–71.

CAS
PubMed
PubMed Central
Google Scholar

Smedh M, Beck C, Sott K, Goksör M: CellStress - open source image analysis program for single-cell analysis. In*:* 2010. 77622N-77622N-77611.

Kvarnstrom M, Logg K, Diez A, Bodvard K, Kall M. Image analysis algorithms for cell contour recognition in budding yeast. Opt Express. 2008;16(17):12943–57.

Article
PubMed
Google Scholar

Balsa-Canto E, Banga JR. AMIGO, a toolbox for advanced model identification in systems biology using global optimization. Bioinformatics. 2011;27(16):2311–3.