Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7(3–4):601–20.
Article
CAS
PubMed
Google Scholar
Markowetz F, Spang R. Inferring cellular networks-a review. BMC Bioinformatics. 2007;8(Suppl 6):S5.
Article
PubMed
PubMed Central
Google Scholar
Murphy KP. Dynamic Bayesian networks: representation, inference and learning. Berkeley: University of California; 2002.
Google Scholar
Perrin B-E, Ralaivola L, Mazurie A, Bottani S, Mallet J, d’Alche-Buc F. Gene networks inference using dynamic Bayesian networks. Bioinformatics. 2003;19:Ii138–48.
Article
PubMed
Google Scholar
Lahdesmaki H, Hautaniemi S, Shmulevich I, Yli-Harja O. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks. Signal Process. 2006;86(4):814–34.
Article
Google Scholar
Hache H, Lehrach H, Herwig R. Reverse engineering of gene regulatory networks: a comparative study. EURASIP J Bioinformatics Syst Biol. 2009;2009:1–12.
Google Scholar
Bornholdt S. Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface. 2008;5(Suppl 1):S85–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin S, Zhang Z, Martino A, Faulon JL. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics. 2007;23(7):866–74.
Article
CAS
PubMed
Google Scholar
de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol. 2002;9(1):67–103.
Article
PubMed
Google Scholar
Linde J, Schulze S, Henkel SG, Guthke R. Data- and knowledge-based modeling of gene regulatory networks: an update. EXCLI J. 2015;14:346–78.
PubMed
PubMed Central
Google Scholar
Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How to infer gene networks from expression profiles. Mol Syst Biol 2007, 3(1): 78.
Werhli AV, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics. 2006;22(20):2523–31.
Article
CAS
PubMed
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:1128. Article17
Article
Google Scholar
Friedman N. Inferring cellular networks using probabilistic graphical models. Science. 2004;303(5659):799–805.
Article
CAS
PubMed
Google Scholar
Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinformatics. 2012;13:328.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roy S, Bhattacharyya DK, Kalita JK. Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinformatics. 2014;15(7):1–14.
Google Scholar
Ballouz S, Verleyen W, Gillis J. Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics. 2015;31(13):2123–30.
Article
CAS
PubMed
Google Scholar
Kogelman LJ, Cirera S, Zhernakova DV, Fredholm M, Franke L, Kadarmideen HN. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA sequencing in a porcine model. BMC Med Genet. 2014;7:57.
Google Scholar
DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA. Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One. 2011;6(10):e26683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, et al. Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One. 2010;5(2):e9202.
Article
PubMed
PubMed Central
Google Scholar
Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G. Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci. 2010;107(14):6286–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marbach D, Schaffter T, Mattiussi C, Floreano D. Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods. J. Comput. Biol. 2009;16:229–39.
Yip KY, Alexander RP, Yan KK, Gerstein M. Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data. PLoS One. 2010;5(1):e8121.
Article
PubMed
PubMed Central
Google Scholar
Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics. 2011;27(16):2263–70.
Article
CAS
PubMed
Google Scholar
Young WC, Raftery AE, Yeung KY. Fast Bayesian inference for gene regulatory networks using ScanBMA. BMC Syst Biol. 2014;8:47.
Article
PubMed
PubMed Central
Google Scholar
Huynh-Thu V, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776.
Article
PubMed
PubMed Central
Google Scholar
Meyer P, Marbach D, Roy S, Kellis M. Information-theoretic inference of gene networks using backward elimination. In: BIOCOMP, International Conference on Bioinformatics and Computational Biology: 2010;700–5
Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2006;7(Suppl 1):S7.
Article
PubMed
PubMed Central
Google Scholar
Meyer PE, Kontos K, Lafitte F, Bontempi G. Information-theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol. 2007;79879
Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom of crowds for robust gene network inference. Nat Methods. 2012;9(8):796–804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers S, Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics. 2005;21(14):3131–7.
Article
CAS
PubMed
Google Scholar
Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H, Verschoren A, et al. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics. 2006;7:43.
Article
PubMed
PubMed Central
Google Scholar
Bellot P, Olsen C, Salembier P, Oliveras-Verges A, Meyer PE. NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference. BMC Bioinformatics. 2015;16:312.
Article
PubMed
PubMed Central
Google Scholar
Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for constructing large scale gene networks. PLoS One. 2012;7(1):e29348.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinke F, Seeger M, Tsuda K. Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models. BMC Syst Biol. 2007;1(1):51.
Article
PubMed
PubMed Central
Google Scholar
Dehghannasiri R, Yoon BJ, Dougherty ER. Efficient experimental design for uncertainty reduction in gene regulatory networks. BMC Bioinformatics. 2015;16(Suppl 13):S2.
Article
PubMed
PubMed Central
Google Scholar
Cover TM, Thomas JA: Elements of information theory: Wiley-Interscience; 2006.
Google Scholar
Reverter A, Chan EK. Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics. 2008;24(21):2491–7.
Article
CAS
PubMed
Google Scholar
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–38.
Article
PubMed
Google Scholar
Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004;5(2):101–13.
Article
CAS
PubMed
Google Scholar
Albert R. Scale-free networks in cell biology. J Cell Sci. 2005;118(Pt 21):4947–57.
Article
CAS
PubMed
Google Scholar
de la Fuente A, Bing N, Hoeschele I, Mendes P. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics. 2004;20(18):3565–74.
Article
PubMed
Google Scholar
Zuo Y, Yu G, Tadesse MG, Ressom HW. Biological network inference using low order partial correlation. Methods (San Diego, Calif). 2014;69(3):266–73.
Article
CAS
Google Scholar
Kim S. Ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods. 2015;22(6):665–74.
PubMed
PubMed Central
Google Scholar
Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol. 2005;4(1):32.
Article
Google Scholar
Tu Y, Stolovitzky G, Klein U. Quantitative noise analysis for gene expression microarray experiments. Proc Natl Acad Sci U S A. 2002;99(22):14031–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med. 2012;4(5):41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5(1):e8.
Article
PubMed
PubMed Central
Google Scholar
Olsen C, Meyer PE, Bontempi G. On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information. EURASIP J Bioinform Syst Biol. 2009;1:308959.
Google Scholar
Meyer PE, Lafitte F, Bontempi G: minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 2008, 9:461.
Watson-Haigh NS, Kadarmideen HN, Reverter A. PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches. Bioinformatics. 2010;26(3):411–3.
Article
CAS
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
PubMed
PubMed Central
Google Scholar
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S. Weighted gene coexpression network analysis: state of the art. J Biopharm Stat. 2010;20(2):281–300.
Article
PubMed
Google Scholar
Ud-Dean SM, Gunawan R. Ensemble inference and inferability of gene regulatory networks. PLoS One. 2014;9(8):e103812.
Article
PubMed
PubMed Central
Google Scholar
Ud-Dean SM, Heise S, Klamt S, Gunawan R. TRaCE+: ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments. BMC Bioinformatics. 2016;17:252.
Article
PubMed
PubMed Central
Google Scholar
Altay G. Empirically determining the sample size for large-scale gene network inference algorithms. IET Syst Biol. 2012;6(2):35–43.
Article
CAS
PubMed
Google Scholar
Slavov N: Inference of Sparse Networks with Unobserved Variables. Application to Gene Regulatory Networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics; Proceedings of Machine Learning Research: Edited by Yee Whye TMike T. PMLR 2010: 757--764.
Sarder P, Schierding W, Cobb JP, Nehorai A. Estimating sparse Gene regulatory networks using a Bayesian linear regression. IEEE Transactions on NanoBioscience. 2010;9(2):121–31.
Article
PubMed
Google Scholar
Omranian N, Eloundou-Mbebi JMO, Mueller-Roeber B, Nikoloski Z. Gene regulatory network inference using fused LASSO on multiple data sets. Sci Rep. 2016;6:20533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flassig RJ, Heise S, Sundmacher K, Klamt S. An effective framework for reconstructing gene regulatory networks from genetical genomics data. Bioinformatics. 2013;29(2):246–54.
Article
CAS
PubMed
Google Scholar
Studham ME, Tjärnberg A, Nordling TEM, Nelander S, Sonnhammer ELL. Functional association networks as priors for gene regulatory network inference. Bioinformatics. 2014;30(12):i130–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015;10(3):e0118432.
Article
PubMed
PubMed Central
Google Scholar
Davis J, Goadrich M: The Relationship Between Precision-Recall and ROC Curves. In ICML ‘06: Proceedings of the 23rd international conference on Machine learning 2006:233–240.
Ma H, Bandos AI, Rockette HE, Gur D. On use of partial area under the ROC curve for evaluation of diagnostic performance. Stat Med. 2013;32(20):3449–58.
Article
PubMed
PubMed Central
Google Scholar
Walter SD. The partial area under the summary ROC curve. Stat Med. 2005;24(13):2025–40.
Article
CAS
PubMed
Google Scholar