Jia P, Liu Y, Zhao Z. Integrative pathway analysis of genome-wide association studies and gene expression data in prostate cancer. BMC Syst Biol. 2012;6(Suppl 3):S13. https://doi.org/10.1186/1752-0509-6-S3-S13.
Article
PubMed
PubMed Central
Google Scholar
Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics. 2011;27(20):2917–8. https://doi.org/10.1093/bioinformatics/btr499.
Article
CAS
PubMed
Google Scholar
Shen K, Tseng GC. Meta-analysis for pathway enrichment analysis when combining multiple genomic studies. Bioinformatics. 2010;26(10):1316–23. https://doi.org/10.1093/bioinformatics/btq148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun H, Wang H, Zhu R, Tang K, Gong Q, Cui J, et al. iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis. Bioinformatics. 2014;30(5):737–9. https://doi.org/10.1093/bioinformatics/btt576.
Article
CAS
PubMed
Google Scholar
Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55–62. https://doi.org/10.1038/nature18003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, et al. Integrated Proteogenomic characterization of human high-grade serous ovarian Cancer. Cell. 2016;166(3):755–65. https://doi.org/10.1016/j.cell.2016.05.069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582. https://doi.org/10.1038/nature13319.
Article
CAS
PubMed
Google Scholar
Draghici S. Statistical intelligence: effective analysis of high-density microarray data. Drug Discov Today. 2002;7(11):S55–63. https://doi.org/10.1016/S1359-6446(02)02292-4.
Article
CAS
PubMed
Google Scholar
Khatri P, Draghici S, Ostermeier GC, Krawetz SA. Profiling gene expression using onto-express. Genomics. 2002;79(2):266–70. https://doi.org/10.1006/geno.2002.6698.
Article
CAS
PubMed
Google Scholar
Ackermann M, Strimmer K. A general modular framework for gene set enrichment analysis. BMC Bioinformatics. 2009;10:47. https://doi.org/10.1186/1471-2105-10-47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3. https://doi.org/10.1186/gb-2003-4-5-p3.
Article
PubMed
Google Scholar
Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002;31(1):19. https://doi.org/10.1038/ng0502-19.
Article
CAS
PubMed
Google Scholar
Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003;4(4):R28. https://doi.org/10.1186/gb-2003-4-4-r28.
Article
PubMed
PubMed Central
Google Scholar
Beißbarth T, Speed TP. GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics. 2004;20(9):1464–5. https://doi.org/10.1093/bioinformatics/bth088.
Article
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Efron B, Tibshirani R. On testing the significance of sets of genes. The annals of applied statistics. 2007;1:107–29. https://doi.org/10.1214/07-AOAS101.
Article
Google Scholar
Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009;25(1):75–82. https://doi.org/10.1093/bioinformatics/btn577.
Article
CAS
PubMed
Google Scholar
Korucuoglu M, Isci S, Ozgur A, Otu HH. Bayesian pathway analysis of cancer microarray data. PLoS One. 2014;9(7):e102803. https://doi.org/10.1371/journal.pone.0102803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Terfve C, Rose JC, Markowetz F. HTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens. Bioinformatics. 2011;27(6):879–80. https://doi.org/10.1093/bioinformatics/btr028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarca AL, Draghici S, Bhatti G, Romero R. Down-weighting overlapping genes improves gene set analysis. BMC Bioinformatics. 2012;13:136. https://doi.org/10.1186/1471-2105-13-136.
Article
PubMed
PubMed Central
Google Scholar
Bokanizad B, Tagett R, Ansari S, Helmi BH, Draghici S. SPATIAL: a system-level PAThway impact AnaLysis approach. Nucleic Acids Res. 2016;44(11):5034–44. https://doi.org/10.1093/nar/gkw429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bayerlová M, Jung K, Kramer F, Klemm F, Bleckmann A, Beißbarth T. Comparative study on gene set and pathway topology-based enrichment methods. BMC bioinformatics. 2015;16(1):334.
Article
PubMed
PubMed Central
Google Scholar
Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.
Article
CAS
Google Scholar
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. https://doi.org/10.1038/35021093.
Article
CAS
PubMed
Google Scholar
Kennedy RD, D'Andrea AD. The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev. 2005;19(24):2925–40. https://doi.org/10.1101/gad.1370505.
Article
CAS
PubMed
Google Scholar
Moynahan ME, Cui TY, Jasin M. Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 2001;61(12):4842–50.
CAS
PubMed
Google Scholar
Young SZ, Bordey A. GABA’s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology. 2009;24(3):171–85. https://doi.org/10.1152/physiol.00002.2009.
Article
CAS
PubMed
Google Scholar
Lancaster E, Dalmau J. Neuronal autoantigens—pathogenesis, associated disorders and antibody testing. Nat Rev Neurol. 2012;8(7):380. https://doi.org/10.1038/nrneurol.2012.99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf C, Chenard M-P, de Grossouvre PD, Bellocq J-P, Chambon P, Basset P. Breast-Cancer--associated Stromelysin-3 gene is expressed in basal cell carcinoma and during cutaneous wound healing. J Investig Dermatol. 1992;99(6):870–2. https://doi.org/10.1111/1523-1747.ep12614846.
Article
CAS
PubMed
Google Scholar
Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7. https://doi.org/10.1200/JCO.2008.18.1370.
Article
PubMed
PubMed Central
Google Scholar
Eroles P, Bosch A, Perez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012;38(6):698–707. https://doi.org/10.1016/j.ctrv.2011.11.005.
Article
CAS
PubMed
Google Scholar
Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, Ng S, et al. Subtype and pathway specific responses to anticancer compounds in breast cancer. Proc Natl Acad Sci U S A. 2012;109(8):2724–9.
Article
CAS
PubMed
Google Scholar
Deisenroth C, Thorner AR, Enomoto T, Perou CM, Zhang Y. Mitochondrial Hep27 is a c-Myb target gene that inhibits Mdm2 and stabilizes p53. Mol Cell Biol. 2010;30(16):3981–93. https://doi.org/10.1128/MCB.01284-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitz KJ, Grabellus F, Callies R, Otterbach F, Wohlschlaeger J, Levkau B, et al. High expression of focal adhesion kinase (p125FAK) in node-negative breast cancer is related to overexpression of HER-2/neu and activated Akt kinase but does not predict outcome. Breast Cancer Res. 2005;7(2):R194–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazaro G, Smith C, Goddard L, Jordan N, McClelland R, Barrett-Lee P, et al. Targeting focal adhesion kinase in ER+/HER2+ breast cancer improves trastuzumab response. Endocr Relat Cancer. 2013;20(5):691–704. https://doi.org/10.1530/ERC-13-0019.
Article
CAS
PubMed
Google Scholar
Perez-Tenorio G, Alkhori L, Olsson B, Waltersson MA, Nordenskjold B, Rutqvist LE, et al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res. 2007;13(12):3577–84. https://doi.org/10.1158/1078-0432.CCR-06-1609.
Article
CAS
PubMed
Google Scholar
Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084–91. https://doi.org/10.1158/0008-5472.CAN-07-6854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellis MJ, Lin L, Crowder R, Tao Y, Hoog J, Snider J, et al. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2010;119(2):379–90. https://doi.org/10.1007/s10549-009-0575-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64(21):7678–81. https://doi.org/10.1158/0008-5472.CAN-04-2933.
Article
CAS
PubMed
Google Scholar
Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, et al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther. 2011;10(6):1093–101. https://doi.org/10.1158/1535-7163.MCT-10-1089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. https://doi.org/10.1126/science.1096502.
Article
CAS
PubMed
Google Scholar
Fu P, Ibusuki M, Yamamoto Y, Hayashi M, Murakami K, Zheng S, et al. Insulin-like growth factor-1 receptor gene expression is associated with survival in breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression. Breast Cancer Res Treat. 2011;130(1):307–17. https://doi.org/10.1007/s10549-011-1605-0.
Article
CAS
PubMed
Google Scholar
Law JH, Habibi G, Hu K, Masoudi H, Wang MY, Stratford AL, et al. Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res. 2008;68(24):10238–46. https://doi.org/10.1158/0008-5472.CAN-08-2755.
Article
CAS
PubMed
Google Scholar
Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci U S A. 2007;104(18):7564–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciruelos Gil EM. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev. 2014;40(7):862–71. https://doi.org/10.1016/j.ctrv.2014.03.004.
Article
CAS
PubMed
Google Scholar
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67. https://doi.org/10.1172/JCI45014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paplomata E, O'Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol. 2014;6(4):154–66. https://doi.org/10.1177/1758834014530023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nahta R. Pharmacological strategies to overcome HER2 cross-talk and Trastuzumab resistance. Curr Med Chem. 2012;19(7):1065–75. https://doi.org/10.2174/092986712799320691.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065–74. https://doi.org/10.1172/JCI34739.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacquemont C, Taniguchi T. The Fanconi anemia pathway and ubiquitin. BMC Biochem. 2007;8(Suppl 1):S10. https://doi.org/10.1186/1471-2091-8-S1-S10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dressing GE, Thomas P. Identification of membrane progestin receptors in human breast cancer cell lines and biopsies and their potential involvement in breast cancer. Steroids. 2007;72(2):111–6. https://doi.org/10.1016/j.steroids.2006.10.006.
Article
CAS
PubMed
Google Scholar
Dressing GE, Alyea R, Pang Y, Thomas P. Membrane progesterone receptors (mPRs) mediate progestin induced antimorbidity in breast cancer cells and are expressed in human breast tumors. Horm Cancer. 2012;3(3):101–12. https://doi.org/10.1007/s12672-012-0106-x.
Article
CAS
PubMed
Google Scholar
Harburg GC, Hinck L. Navigating breast cancer: axon guidance molecules as breast cancer tumor suppressors and oncogenes. J Mammary Gland Biol Neoplasia. 2011;16(3):257–70. https://doi.org/10.1007/s10911-011-9225-1.
Article
PubMed
PubMed Central
Google Scholar
Wolf C, Chenard MP, Durand de Grossouvre P, Bellocq JP, Chambon P, Basset P. Breast-cancer-associated stromelysin-3 gene is expressed in basal cell carcinoma and during cutaneous wound healing. J Invest Dermatol. 1992;99(6):870–2. https://doi.org/10.1111/1523-1747.ep12614846.
Article
CAS
PubMed
Google Scholar
Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7. https://doi.org/10.1038/ng0597-64.
Article
CAS
PubMed
Google Scholar
Turken O, NarIn Y, DemIrbas S, Onde ME, Sayan O, KandemIr EG, et al. Breast cancer in association with thyroid disorders. Breast Cancer Res. 2003;5(5):R110–3.
Article
PubMed
PubMed Central
Google Scholar
Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer subtypes, and survival in the Carolina breast Cancer study. JAMA. 2006;295(21):2492–502. https://doi.org/10.1001/jama.295.21.2492.
Article
CAS
PubMed
Google Scholar
Haughian JM, Pinto MP, Harrell JC, Bliesner BS, Joensuu KM, Dye WW, et al. Maintenance of hormone responsiveness in luminal breast cancers by suppression of notch. Proc Natl Acad Sci. 2012;109(8):2742–7.
Article
CAS
PubMed
Google Scholar
Stylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 2006;66(3):1517–25. https://doi.org/10.1158/0008-5472.CAN-05-3054.
Article
CAS
PubMed
Google Scholar
Buck MB, Knabbe C. TGF-Beta signaling in breast Cancer. Ann N Y Acad Sci. 2006;1089(1):119–26.
Article
CAS
PubMed
Google Scholar