Hellermann JP, Jacobsen SJ, Redfield MM, Reeder GS, Weston SA, Roger VL: Heart failure after myocardial infarction: clinical presentation and survival. Eur J Heart Fail. 2005, 7: 119-125. 10.1016/j.ejheart.2004.04.011
Article
PubMed
Google Scholar
Anavekar NS, McMurray JJV, Velazquez EJ, Solomon SD, Kober L, Rouleau JL, White HD, Nordlander R, Maggioni A, Dickstein K, et al.: Relation between Renal Dysfunction and Cardiovascular Outcomes after Myocardial Infarction. N Engl J Med. 2004, 351: 1285-1295. 10.1056/NEJMoa041365
Article
CAS
PubMed
Google Scholar
Cohn JN, Ferrari R, Sharpe N: Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000, 35: 569-582. 10.1016/S0735-1097(99)00630-0
Article
CAS
PubMed
Google Scholar
Whittaker P: Collagen and ventricular remodeling after acute myocardial infarction: concepts and hypotheses. Basic Res Cardiol. 1997, 92: 79-81.
Article
CAS
PubMed
Google Scholar
Zhang M, Shah MA: Role of reactive oxygen species in myocardial remodeling. Current Heart Failure Reports. 2007, 4: 26-30. 10.1007/s11897-007-0022-5
Article
CAS
PubMed
Google Scholar
Rumberger JA: Ventricular Dilatation and Remodeling After Myocardial Infarction. Mayo Clin Proc. 1994, 69: 664-674.
Article
CAS
PubMed
Google Scholar
Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, Burns AR, Rossen RD, Michael L, Entman M: Matrix-Dependent Mechanism of Neutrophil-Mediated Release and Activation of Matrix Metalloproteinase 9 in Myocardial Ischemia/Reperfusion. Circulation. 2001, 103: 2181-2187.
Article
CAS
PubMed
Google Scholar
Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT: Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999, 15: 3063-3070.
Article
Google Scholar
Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT, McClister DM, Su H, Gannon J, MacGillivray C, et al.: Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006, 290: H232-239.
Article
CAS
PubMed
Google Scholar
Webb CS, Bonnema DD, Ahmed SH, Leonardi AH, McClure CD, Clark LL, Stroud RE, Corn WC, Finklea L, Zile MR, Spinale FG: Specific Temporal Profile of Matrix Metalloproteinase Release Occurs in Patients After Myocardial Infarction: Relation to Left Ventricular Remodeling. Circulation. 2006, 114: 1020-1027. 10.1161/CIRCULATIONAHA.105.600353
Article
CAS
PubMed
Google Scholar
Vanhoutte D, Schellings M, Pinto Y, Heymans S: Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: A temporal and spatial window. Cardiovasc Res. 2006, 69: 604-613. 10.1016/j.cardiores.2005.10.002
Article
CAS
PubMed
Google Scholar
Yang F, Liu YH, Yang XP, Xu J, Kapke A, Carretero OA: Myocardial infarction and cardiac remodelling in mice. Exp Physiol. 2002, 87: 547-555. 10.1113/eph8702385
Article
CAS
PubMed
Google Scholar
N Ashizawa KG, Do YS, Nunohiro T, Giachelli CM, Meehan WP, Tuan TL, Hsueh WA: Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. J Clin Invest. 1996, 98: 2218-2227. 10.1172/JCI119031
Article
Google Scholar
Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R: Osteopontin Expression Is Required for Myofibroblast Differentiation. Circ Res. 2008, 102: 319-327. 10.1161/CIRCRESAHA.107.160408
Article
CAS
PubMed
Google Scholar
Zahradka P: Novel Role for Osteopontin in Cardiac Fibrosis. Circ Res. 2008, 102: 270-272. 10.1161/CIRCRESAHA.107.170555
Article
CAS
PubMed
Google Scholar
Borg TK, Markwald R: Periostin: More Than Just an Adhesion Molecule. Circ Res. 2007, 101: 230-231. 10.1161/CIRCRESAHA.107.159103
Article
CAS
PubMed
Google Scholar
Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB: Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proceedings of the National Academy of Sciences of the United States of America. 1987, 84: 5788-5792. 10.1073/pnas.84.16.5788
Article
PubMed Central
CAS
PubMed
Google Scholar
Krause SW, Rehli M, Kreutz M, Schwarzfischer L, Paulauskis JD, Andreesen R: Differential screening identifies genetic markers of monocyte to macrophage maturation. J Leuko Biol. 1996, 60: 510-545.
Google Scholar
Burke B LC: The Macrophage. 2002, Oxford: Oxford University Press, 2,
Google Scholar
Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R: Circulating fibrocytes: collagen-secreting cells of the peripheral blood. The International Journal of Biochemistry & Cell Biology. 2004, 36: 598-606. 10.1016/j.biocel.2003.10.005
Article
CAS
Google Scholar
Yehualaeshet T, O'Connor R, Green-Johnson J, Mai S, Silverstein Roy, Murphy-Ullrich JE, Khalil N: Activation of Rat Alveolar Macrophage-Derived Latent Transforming Growth Factor β-1 by Plasmin Requires Interaction with Thrombospondin-1 and its Cell Surface Receptor, CD36. Am J Pathol. 1999, 155: 841-851. 10.1016/S0002-9440(10)65183-8
Article
PubMed Central
CAS
PubMed
Google Scholar
Khalil N, Whitman C, Zuo L, Danielpour D, Greenberg A: Regulation of alveolar macrophage transforming growth factor-beta secretion by corticosteroids in bleomycin-induced pulmonary inflammation in the rat. JClin Invest. 1993, 92: 1812-1818. 10.1172/JCI116771.
Article
CAS
Google Scholar
Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH: Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of Sciences of the United States of America. 1986, 83: 4167-4171. 10.1073/pnas.83.12.4167
Article
PubMed Central
CAS
PubMed
Google Scholar
Ignotz RA, Massagué J: Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. Journal of Biological Chemistry. 1986, 261: 4337-4345.
CAS
PubMed
Google Scholar
Leroy EC: Increased Collagen Synthesis by Scleroderma Skin Fibroblasts In Vitro: a possibledefect in the regulation or activation of the scleroderma fibroblast. J Clin Invest. 1974, 54: 880-889. 10.1172/JCI107827
Article
PubMed Central
CAS
PubMed
Google Scholar
Naugle JE OE, Zhang X, Mase SE, Pilati CF, Maron MB, Folkesson HG, Horne WI, Doane KJ, Meszaros JG: Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling. Am J Physiol Heart Circ Physiol. 2006, 290: H323-330.
Article
PubMed
Google Scholar
Waugh H, Sherratt J: Macrophage Dynamics in Diabetic Wound Dealing. Bulletin of Mathematical Biology. 2006, 68: 197-207. 10.1007/s11538-005-9022-3
Article
CAS
PubMed
Google Scholar
Helen V, Waugh JAS: Modeling the effects of treating diabetic wounds with engineered skin substitutes. Wound Repair and Regeneration. 2007, 15: 556-565. 10.1111/j.1524-475X.2007.00270.x
Article
Google Scholar
Bellingan GJ, Caldwell H, Howie SE, Dransfield I, Haslett C: In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol. 1996, 157: 2577-2585.
CAS
PubMed
Google Scholar
Olsen L, Sherratt JA, Maini PK: A mathematical model for fibro-proliferative wound healing disorders. Bull Math Biol. 1996, 58: 787-808. 10.1007/BF02459482
Article
CAS
PubMed
Google Scholar
Munoz-Alicea RN-MP, Marcano-Velazquez M: A mathematical model for macrophage, T-cell and mycobacterium tuberculosis interactions. Book A mathematical model for macrophage, T-cell and mycobacterium tuberculosis interactions. 1999, Editor ed.^eds, City: University of Puerto Rico,
Google Scholar
Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA: Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007, 293: H1883-1891. 10.1152/ajpheart.00514.2007
Article
CAS
PubMed
Google Scholar
Darby IA, Bisucci T, Hewitson TD, MacLellan DG: Apoptosis is increased in a model of diabetes-impaired wound healing in genetically diabetic mice. The International Journal of Biochemistry & Cell Biology. 1997, 29: 191-200. 10.1016/S1357-2725(96)00131-8
Article
CAS
Google Scholar
Huang M, Sharma S, Zhu L, Keane M, Luo J, Zhang L, Burdick M, Lin Y, Dohadwala M, Gardner B, et al.: IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J Clin Invest. 2002, 109: 931-937.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cobbold CA, Sherratt JA: Mathematical Modelling of Nitric Oxide Activity in Wound Healing can explain Keloid and Hypertrophic Scarring. Journal of Theoretical Biology. 2000, 204: 257-288. 10.1006/jtbi.2000.2012
Article
CAS
PubMed
Google Scholar
Zhang H, Ahmad M, Gronowicz G: Effects of transforming growth factor-beta 1 (TGF-[beta]1) on in vitro mineralization of human osteoblasts on implant materials. Biomaterials. 2003, 24: 2013-2020. 10.1016/S0142-9612(02)00616-6
Article
CAS
PubMed
Google Scholar
Vandervelde S, van Luyn MJA, Rozenbaum MH, Petersen AH, Tio RA, Harmsen MC: Stem cell-related cardiac gene expression early after murine myocardial infarction. Cardiovasc Res. 2007, 73: 783-793. 10.1016/j.cardiores.2006.11.030
Article
CAS
PubMed
Google Scholar
Sun Y, Weber KT: Cardiac remodeling by fibrous tissue: role of local factors and circulating hormones. Ann Med. 1998, 30: 3-8.
CAS
PubMed
Google Scholar
Czarkowska-P¸czek B, Przybylski J, Marciniak A, Pawłowska M, Juskowa J, Foroncewicz B, Mucha K: Proteolytic Enzymes Activities in Patients After Myocardial Infarction Correlate with Serum Concentration of TGF-β. Inflammation. 2004, 28: 279-284. 10.1007/s10753-004-6051-2
Article
PubMed
Google Scholar
Schaan B, Quadros A, Sarmento-Leite R, De Lucca G, Bender A, Bertoluci M: 'Correction:' Serum transforming growth factor beta-1 (TGF-beta-1) levels in diabetic patients are not associated with pre-existent coronary artery disease. Cardiovascular Diabetology. 2007, 6: 19- 10.1186/1475-2840-6-19
Article
PubMed Central
PubMed
Google Scholar
Ignotz R, Massague J: Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986, 261: 4337-4345.
CAS
PubMed
Google Scholar
Karagiannis ED, Popel AS: A Theoretical Model of Type I Collagen Proteolysis by Matrix Metalloproteinase (MMP) 2 and Membrane Type 1 MMP in the Presence of Tissue Inhibitor of Metalloproteinase 2. J Biol Chem. 2004, 279: 39105-39114. 10.1074/jbc.M403627200
Article
CAS
PubMed
Google Scholar
Vempati P, Karagiannis ED, Popel AS: A Biochemical Model of Matrix Metalloproteinase 9 Activation and Inhibition. J Biol Chem. 2007, 282: 37585-37596. 10.1074/jbc.M611500200
Article
CAS
PubMed
Google Scholar
Fang L, Gao XM, Moore XL, Kiriazis H, Su Y, Ming Z, Lim YL, Dart AM, Du XJ: Differences in inflammation, MMP activation and collagen damage account for gender difference in murine cardiac rupture following myocardial infarction. Journal of Molecular and Cellular Cardiology. 2007, 43: 535-544. 10.1016/j.yjmcc.2007.06.011
Article
CAS
PubMed
Google Scholar
Kelly D, Cockerill G, Ng LL, Thompson M, Khan S, Samani NJ, Squire IB: Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. Eur Heart J. 2007, 28: 711-718. 10.1093/eurheartj/ehm003
Article
PubMed Central
CAS
PubMed
Google Scholar
Kaden JJ, Dempfle CE, Sueselbeck T, Brueckmann M, Poerner TC, Haghi D, Haase KK, Borggrefe M: Time-Dependent Changes in the Plasma Concentration of Matrix Metalloproteinase 9 after Acute Myocardial Infarction. Cardiology. 2003, 99: 140-144. 10.1159/000070670
Article
CAS
PubMed
Google Scholar
Sumitra M, Manikandan P, Nayeem M, Manohar BM, Lokanadam B, Vairamuthu S, Subramaniam S, Puvanakrishnan R: Time course studies on the initiation of complement activation in acute myocardial infarction induced by coronary artery ligation in rats. Molecular and cellular biochemistry. 2005, 268: 149-158. 10.1007/s11010-005-3856-8
Article
CAS
PubMed
Google Scholar
Xiao-Ming G, Ziqiu M, Yidan S, Lu F, Helen K, Qi X, Anthony MD, Xiao-Jun D: Infarct size and post-infarct inflammation determine the risk of cardiac rupture in mice. International journal of cardiology. 2010, 143: 20-28. 10.1016/j.ijcard.2009.01.019
Article
Google Scholar
Gao XM, Xu Q, Kiriazis H, Dart AM, Du XJ: Mouse model of post-infarct ventricular rupture: time course, strain- and gender-dependency, tensile strength, and histopathology. Cardiovascular Research. 2005, 65: 469-477. 10.1016/j.cardiores.2004.10.014
Article
CAS
PubMed
Google Scholar
Kjeldsen L, Sengelov H, Lollike K, Nielsen MH, Borregaard N: Isolation and Characterization of Gelatinase Granules from Human Neutrophils. Blood. 1994, 83: 1640-1649.
CAS
PubMed
Google Scholar
Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT: Regulation of collagen degradation in the rat myocardium after infarction. Journal of molecular and cellular cardiology. 1995, 27: 1281-1292. 10.1016/S0022-2828(05)82390-9
Article
CAS
PubMed
Google Scholar
Loftis MJ, Sexton D, Carver W: Effects of collagen density on cardiac fibroblast behavior and gene expression. Journal of Cellular Physiology. 2003, 196: 504-511. 10.1002/jcp.10330
Article
CAS
PubMed
Google Scholar
Wu CH, Donovan CB, Wu GY: Evidence for pretranslational regulation of collagen synthesis by procollagen propeptides. Journal of Biological Chemistry. 1986, 261: 10482-10484.
CAS
PubMed
Google Scholar
Wetzler C, Kampfer H, Stallmeyer B, Pfeilschifter J, Frank S: Large and Sustained Induction of Chemokines during Impaired Wound Healing in the Genetically Diabetic Mouse: Prolonged Persistence of Neutrophils and Macrophages during the Late Phase of Repair. 2000, 115: 245-253.
Google Scholar
Ertl G, Frantz S: Healing after myocardial infarction. Cardiovasc Res. 2005, 66: 22-32. 10.1016/j.cardiores.2005.01.011
Article
CAS
PubMed
Google Scholar
Nakajima H, Nakajima HO, Salcher O, Dittie AS, Dembowsky K, Jing S, Field LJ: Atrial but Not Ventricular Fibrosis in Mice Expressing a Mutant Transforming Growth Factor-{beta}1 Transgene in the Heart. Circ Res. 2000, 86: 571-579.
Article
CAS
PubMed
Google Scholar
Day J, Friedman A, Schlesinger LS: Modeling the immune rheostat of macrophages in the lung in response to infection. Proceedings of the National Academy of Sciences. 2009, 106 (27): 11246-51. 10.1073/pnas.0904846106.
Article
CAS
Google Scholar
Lin J, Lopez EF, Jin Y, Van Remmen H, Bauch T, Han HC, Lindsey ML: Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms. Exp Gerontol. 2008, 43: 296-306. 10.1016/j.exger.2007.12.005
Article
PubMed Central
CAS
PubMed
Google Scholar
Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT, Sweterlitsch SE, Spinale FG: Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res. 2005, 66: 410-419. 10.1016/j.cardiores.2004.11.029
Article
CAS
PubMed
Google Scholar
Zamilpa R, Lopez EF, Chiao YA, Dai Q, Escobar GP, Hakala K, Weintraub ST, Lindsey ML: Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. PROTEOMICS. 2010, 10: 2214-2223. 10.1002/pmic.200900587
Article
PubMed Central
CAS
PubMed
Google Scholar
Squires CE, Escobar GP, Payne JF, Leonardi RA, Goshorn DK, Sheats NJ, Mains IM, Mingoia JT, Flack EC, Lindsey ML: Altered fibroblast function following myocardial infarction. Journal of Molecular and Cellular Cardiology. 2005, 39: 699-707. 10.1016/j.yjmcc.2005.07.008
Article
CAS
PubMed
Google Scholar
Johan D, Heilborn KBAH: Inhibited proliferation of fibroblasts derived from chronic diabetic wounds and normal dermal fibroblasts treated with high glucose is associated with increased formation of L-lactate. Wound Repair and Regeneration. 1998, 6: 135-141. 10.1046/j.1524-475X.1998.60207.x
Article
Google Scholar
, : Loss of BRCA2 promotes prostate cancer cell invasion through up-regulation of matrix metalloproteinase-9. Cancer Science. 2008, 99: 553-563. 10.1111/j.1349-7006.2007.00719.x
Article
Google Scholar
Eberhardt W, Akool ELS, Rebhan J, Frank S, Beck KF, Franzen R, Hamada FMA, Pfeilschifter J: Inhibition of cytokine-induced MMP-9 expression by PPARalpha agpnists is indirect and is due to a no-mediated reduction of mRNA stability. J Biol Chem. 2002, M202008200,
Google Scholar
Eberhardt W, Akool ELS, Rebhan J, Frank S, Beck KF, Franzen R, Hamada FMA, Pfeilschifter J: Inhibition of Cytokine-induced Matrix Metalloproteinase 9 Expression by Peroxisome Proliferator-activated Receptor alpha Agonists Is Indirect and Due to a NO-mediated Reduction of mRNA Stability. J Biol Chem. 2002, 277: 33518-33528. 10.1074/jbc.M202008200
Article
CAS
PubMed
Google Scholar
Monaco S, Sparano V, Gioia M, Sbardella D, Pierro DD, Marini S, Coletta M: Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains. Protein Sci. 2006, 15: 2805-2815. 10.1110/ps.062430706
Article
PubMed Central
CAS
PubMed
Google Scholar
Iris Metzmacher PR, Abel Martin, Friess Wolfgang: In vitro binding of matrix metalloproteinase-2 (MMP-2), MMP-9, and bacterial collagenase on collagenous wound dressings. Wound Repair and Regeneration. 2007, 15: 549-555. 10.1111/j.1524-475X.2007.00263.x
Article
PubMed
Google Scholar
Atkins P: Physical Chemistry for the Life Sciences. 2006, Oxford, Oxford University Press,
Google Scholar