Lee SH, van der Werf JHJ, Hayes BJ, Goddard ME, Visscher PM: Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet. 2008, 4 (10): e1000231.-

Article
PubMed Central
PubMed
Google Scholar

Lynch M, Walsh B: Genetics and Analysis of Quantitative Traits. 1998, Sinauer Associates, Sunderland, MA

Google Scholar

Lander ES, Botstein D: Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989, 121: 185-199.

PubMed Central
CAS
PubMed
Google Scholar

Zeng ZB: Precision mapping of quantitative trait loci. Genetics. 1994, 136: 1457-1468.

PubMed Central
CAS
PubMed
Google Scholar

Xu S, Atchley WR: A random model approach to interval mapping of quantitative genes. Genetics. 1995, 141: 1189-1197.

PubMed Central
CAS
PubMed
Google Scholar

Wu RL, Ma CX, Casella G: Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics. 2002, 160: 779-792.

PubMed Central
CAS
PubMed
Google Scholar

Yi N, Xu S: Bayesian lasso for quantitative trait loci mapping. Genetics. 2008, 179: 1045-1055. 10.1534/genetics.107.085589

Article
PubMed Central
CAS
PubMed
Google Scholar

Zou F, Nie L, Wright FA, Sen PK: A robust QTL mapping procedure. J Stat Plann Infer. 2009, 139: 978-989. 10.1016/j.jspi.2008.06.009.

Article
Google Scholar

Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L: Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature. 2010, 464: 1039-1042. 10.1038/nature08923

Article
PubMed Central
CAS
PubMed
Google Scholar

Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW: Dissecting the complex architecture of a quantitative trait locus in yeast. Nature. 2002, 416: 326-330. 10.1038/416326a

Article
CAS
PubMed
Google Scholar

Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M, O'Brien WE, Conti DV, Witte JS, Lander ES, Nadeau JH: Genetic dissection of complex traits with chromosome substitution strains of mice. Science. 2004, 304: 445-448. 10.1126/science.1093139

Article
CAS
PubMed
Google Scholar

Altshuler D, Daly MJ, Lander ES: Genetic mapping in human disease. Science. 2008, 322: 881-888. 10.1126/science.1156409

Article
PubMed Central
CAS
PubMed
Google Scholar

Shao H, Burrage LC, Sinasac DS, Hill AE, Ernest SR, O'Brien W, Courtland HW, Jepsen KJ, Kirby A, Kulbokas EJ, Daly MJ, Broman KW, Lander ES, Nadeau JH: Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci USA. 2008, 105: 19910-19914. 10.1073/pnas.0810388105

Article
PubMed Central
CAS
PubMed
Google Scholar

Mackay TFC, Stone EA, Ayroles JF: The genetics of quantitative traits: challenges and prospects. Nat Rev Genet. 2009, 10: 565-577.

Article
CAS
PubMed
Google Scholar

Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC, Maloof JN, Loudet O, Trainer GT, Dabi T, Borevitz JO, Chory J, Weigel D: QTL mapping in new *Arabidopsis thaliana* advanced intercross-recombinant inbred lines. PLoS ONE. 2009, 4 (2): e4318- 10.1371/journal.pone.0004318

Article
PubMed Central
PubMed
Google Scholar

Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD: *fw2. 2*: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000, 289: 85-88. 10.1126/science.289.5476.85

Article
CAS
PubMed
Google Scholar

Li C, Zhou A, Sang T: Rice domestication by reducing shattering. Science. 2006, 311: 1936-1939. 10.1126/science.1123604

Article
CAS
PubMed
Google Scholar

Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X: Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet. 2009, 41: 494-497. 10.1038/ng.352

Article
CAS
PubMed
Google Scholar

Ma CX, Casella G, Wu RL: Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics. 2002, 161: 1751-1762.

PubMed Central
PubMed
Google Scholar

Wu RL, Lin M: Functional mapping - how to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet. 2006, 7: 229-237.

Article
CAS
PubMed
Google Scholar

Li Y, Wu RL: Functional mapping of growth and development. Biol Rev. 2010, 85: 207-216.

Article
PubMed
Google Scholar

Kitano H: Systems biology: a brief overview. Science. 2002, 295: 1662-1664. 10.1126/science.1069492

Article
CAS
PubMed
Google Scholar

Jansen RC: Studying complex biological systems using multifactorial perturbation. Nat Rev Genet. 2003, 4: 145-151.

Article
CAS
PubMed
Google Scholar

Csete ME, Doyle JC: Reverse engineering of biological complexity. Science. 2002, 295: 1664-1669. 10.1126/science.1069981

Article
CAS
PubMed
Google Scholar

Cannell MGR, Dewar RC: Carbon allocation in trees: a review of concepts for modelling. Ad Ecol Res. 1994, 25: 59-104.

Article
Google Scholar

Luo Y, Field CB, Mooney HA: Predicting responses of photosynthesis and root fraction to elevated CO_{2:} Interactions among carbon, nitrogen, and growth. Plant Cell Environ. 1994, 17: 1195-1204. 10.1111/j.1365-3040.1994.tb02017.x.

Article
Google Scholar

Chen J, Reynolds J: A coordination model of carbon allocation in relation to water supply. Ann Bot. 1997, 80: 45-55. 10.1006/anbo.1997.0406.

Article
CAS
Google Scholar

Weiner J: Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst. 2004, 6: 207-215. 10.1078/1433-8319-00083.

Article
Google Scholar

Hermans C, Hammond JP, White PJ, Verbruggen N: How do plants respond to nutrient shortage by biomass allocation?. Trends Plant Sci. 2006, 11: 610-617. 10.1016/j.tplants.2006.10.007

Article
CAS
PubMed
Google Scholar

Marcelis LFM, Heuvelink E: Concepts of modelling carbon allocation among plant organs. Functional-Structural Plant Modelling in Crop Production. Edited by: Vos J, Marcelis LFM, de Visser PHB, Struik PC and Evers JB. 2007, 103-111. Springer. Printed in the Netherlands

Chapter
Google Scholar

Genard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G: Carbon allocation in fruit trees: From theory to modelling. Trees - Structure and Function. 2008, 22: 269-282.

Article
Google Scholar

West GB, Brown JH, Enquist BJ: A general model for the origin of allometric scaling laws in biology. Science. 1997, 276: 122-126. 10.1126/science.276.5309.122

Article
CAS
PubMed
Google Scholar

West GB, Brown JH, Enquist BJ: The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science. 1999, 284: 1677-1679. 10.1126/science.284.5420.1677

Article
CAS
PubMed
Google Scholar

West GB, Brown JH, Enquist BJ: A general model for ontogenetic growth. Nature. 2001, 413: 628-631. 10.1038/35098076

Article
CAS
PubMed
Google Scholar

Putter H, Heisterkamp SH, Lange JMA, De Wolf F: A Bayesian approach to parameter estimation in HIV dynamical models. Stat Med. 2002, 21: 2199-2214. 10.1002/sim.1211

Article
CAS
PubMed
Google Scholar

Huang Y, Wu H: A Bayesian approach for estimating antiviral efficacy in HIV dynamic models. J Appl Stat. 2006, 33: 155-174. 10.1080/02664760500250552.

Article
Google Scholar

Huang JZ, Liu N, Pourahmadi M, Liu L: Covariance selection and estimation via penalized normal likelihood. Biometrika. 2006, 93: 85-98. 10.1093/biomet/93.1.85.

Article
Google Scholar

Li L, Brown MB, Lee KH, Gupta S: Estimation and inference for a spline-enhanced population pharmacokinetic model. Biometrics. 2002, 58: 601-611. 10.1111/j.0006-341X.2002.00601.x

Article
PubMed
Google Scholar

Ramsay JO: Principal differential analysis: Data reduction by differential operators. J Roy Stat Soc Ser B. 1996, 58: 495-508.

Google Scholar

Ramsay JO, Silverman BW: Functional Data Analysis. 2005, Springer, New York, 2

Google Scholar

Ramsay JO, Hooker G, Campbell D, Cao JG: Parameter estimation for differential equations: a generalized smoothing approach (with discussion). J Roy Stat Soc Ser B. 2007, 69: 741-796. 10.1111/j.1467-9868.2007.00610.x.

Article
Google Scholar

Liang H, Wu HL: Parameter estimation for differential equation models using a frame-work of measurement error in regression model. J Am Stat Assoc. 2008, 103: 1570-1583. 10.1198/016214508000000797

Article
PubMed Central
CAS
PubMed
Google Scholar

Efron B, Tibshirani RJ: An Introduction to the Bootstrap. 1993, Chapman & Hall

Book
Google Scholar

Li Q, Huang Z, Xu M, Wang C, Gai J, Huang Y, Pang X, Wu RL: Functional mapping of genotype-environment interactions for soybean growth by a semiparametric approach. Plant Methods. 2010, 6: 13- 10.1186/1746-4811-6-13

Article
PubMed Central
CAS
PubMed
Google Scholar

McCarthy MC, Enquist BJ: Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol. 2007, 21: 713-720. 10.1111/j.1365-2435.2007.01276.x.

Article
Google Scholar

Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J: Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010, 42: 541-544. 10.1038/ng.591

Article
CAS
PubMed
Google Scholar

Wu S, Yap JS, Li Y, Li Q, Fu GF, Li JH, Das K, Berg A, Zeng YR, Wu RL: Network models for dissecting plant development by functional mapping. Curr Bioinform. 2009, 4: 183-187. 10.2174/157489309789071093.

Article
CAS
Google Scholar

Li H, Huang Z, Gai J, Wu S, Zeng Y, Wu RL: A conceptual framework for mapping quantitative trait loci regulating ontogenetic allometry. PLoS ONE. 2007, 2 (11): e1245- 10.1371/journal.pone.0001245

Article
PubMed Central
PubMed
Google Scholar

Zhang W-K, Wang Y-J, Luo G-Z, Zhang J-S, He C-Y, Wu XL, Gai JY, Chen SY: QTL mapping of ten agronomic traits on the soybean (*Glycine* max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet. 2004, 108: 1131-1139. 10.1007/s00122-003-1527-2

Article
CAS
PubMed
Google Scholar

Wu RL, Ma CX, Casella G: Statistical Genetics of Quantitative Traits: Linkage, Maps, and QTL. 2007, Springer-Verlag, New York

Google Scholar