Cui X, Churchill GA: Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 2003, 4: 210. 10.1186/gb-2003-4-4-210
Article
Google Scholar
Adams S, Carre IA: Downstream of the plant circadian clock: output pathways for the control of physiology and development. Essays Biochem 2011, 49: 53-69.
Article
CAS
Google Scholar
Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH: Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 2010, 33: 1597-1613. 10.1111/j.1365-3040.2010.02167.x
Article
CAS
Google Scholar
Chaves MM, Flexas J, Pinheiro C: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 2009, 103: 551-560.
Article
CAS
Google Scholar
Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM, et al: Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 2008, 4: e14. 10.1371/journal.pgen.0040014
Article
Google Scholar
Bieniawska Z, Espinoza C, Schlereth A, Sulpice R, Hincha DK, Hannah MA: Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 2008, 147: 263-279. 10.1104/pp.108.118059
Article
CAS
Google Scholar
Espinoza C, Degenkolbe T, Caldana C, Zuther E, Leisse A, Willmitzer L, Hincha DK, Hannah MA: Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PLoS One 2010, 5: e14101. 10.1371/journal.pone.0014101
Article
Google Scholar
Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T: Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 2009, 50: 447-462. 10.1093/pcp/pcp004
Article
CAS
Google Scholar
Espinoza C, Bieniawska Z, Hincha DK, Hannah MA: Interactions between the circadian clock and cold-response in Arabidopsis. Plant Signal Behav 2008, 3: 593-594. 10.4161/psb.3.8.6340
Article
Google Scholar
Schliep A, Steinhoff C, Schonhuth A: Robust inference of groups in gene expression time-courses using mixtures of HMMs. Bioinformatics 2004,20(Suppl 1):i283-i289. 10.1093/bioinformatics/bth937
Article
CAS
Google Scholar
Verducci JS, Melfi VF, Lin S, Wang Z, Roy S, Sen CK: Microarray analysis of gene expression: considerations in data mining and statistical treatment. Physiol Genomics 2006, 25: 355-363. 10.1152/physiolgenomics.00314.2004
Article
CAS
Google Scholar
Dejean S, Martin PG, Baccini A, Besse P: Clustering time-series gene expression data using smoothing spline derivatives. EURASIP J Bioinform Syst Biol 2007, 70561.
Google Scholar
Ernst J, Nau GJ, Bar-Joseph Z: Clustering short time series gene expression data. Bioinformatics 2005,21(Suppl 1):i159-i168. 10.1093/bioinformatics/bti1022
Article
CAS
Google Scholar
Hestilow TJ, Huang Y: Clustering of gene expression data based on shape similarity. EURASIP J Bioinform Syst Biol 2009, 195712.
Google Scholar
Syeda-Mahmood T: Clustering time-varying gene expression profiles using scale-space signals. Proc IEEE Comput Soc Bioinform Conf 2003, 2: 48-56.
Google Scholar
Koenig L, Youn E: Hierarchical Signature Clustering for Time Series Microarray Data: Software Tools and Algorithms for Biological Systems Volume 696. Springer, New York; 2011:57-65.
Google Scholar
Chiappetta P, Roubaud MC, Torresani B: Blind source separation and the analysis of microarray data. J Comput Biol 2004, 11: 1090-1109. 10.1089/cmb.2004.11.1090
Article
CAS
Google Scholar
Salome PA, Xie Q, McClung CR: Circadian timekeeping during early Arabidopsis development. Plant Physiol 2008, 147: 1110-1125. 10.1104/pp.108.117622
Article
CAS
Google Scholar
Morker KH, Roberts MR: Light exerts multiple levels of influence on the Arabidopsis wound response. Plant Cell Environ 2011, 34: 717-728. 10.1111/j.1365-3040.2011.02276.x
Article
CAS
Google Scholar
Dong MA, Farre EM, Thomashow MF: Circadian clock-associated 1 and late elongated hypocotyL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A 2011, 108: 7241-7246. 10.1073/pnas.1103741108
Article
CAS
Google Scholar
Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS: Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci U S A 2003, 100: 10146-10151. 10.1073/pnas.1732547100
Article
CAS
Google Scholar
Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JCW, Lynn JR, Straume M, Smith JQ, Millar AJ: Flowering locus C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell Online 2006, 18: 639-650. 10.1105/tpc.105.038315
Article
CAS
Google Scholar
Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000, 290: 2110-2113. 10.1126/science.290.5499.2110
Article
CAS
Google Scholar
Ptitsyn A: Comprehensive analysis of circadian periodic pattern in plant transcriptome. Bioinforma 2008, 9: S18.
Google Scholar
Price TS, Baggs JE, Curtis AM, Fitzgerald GA, Hogenesch JB: WAVECLOCK: wavelet analysis of circadian oscillation. Bioinformatics 2008, 24: 2794-2795. 10.1093/bioinformatics/btn521
Article
CAS
Google Scholar
Mockler TC, Michael TP, Priest HD, Shen R, Sullivan CM, Givan SA, McEntee C, Kay SA, Chory J: The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol 2007, 72: 353-363. 10.1101/sqb.2007.72.006
Article
CAS
Google Scholar
Lu Y, Rosenfeld R, Bar-Joseph Z: Identifying cycling genes by combining sequence homology and expression data. Bioinformatics 2006, 22: e314-e322. 10.1093/bioinformatics/btl229
Article
CAS
Google Scholar
Wichert S, Fokianos K, Strimmer K: Identifying periodically expressed transcripts in microarray time series data. Bioinformatics 2004, 20: 5-20. 10.1093/bioinformatics/btg364
Article
CAS
Google Scholar
Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P, Bahler J: Periodic gene expression program of the fission yeast cell cycle. Nat Genet 2004, 36: 809-817. 10.1038/ng1377
Article
CAS
Google Scholar
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9: 3273-3297.
Article
CAS
Google Scholar
Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 2002, 13: 1977-2000. 10.1091/mbc.02-02-0030.
Article
CAS
Google Scholar
Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum. PLoS Biol 2003, 1: e5.
Article
Google Scholar
Marks RJ: Introduction to Shannon Sampling and Interpolation Theory. Springer, New York, USA; 1991.
Book
Google Scholar
Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S: NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Res 2004, 32: D575-D577. 10.1093/nar/gkh133
Article
CAS
Google Scholar
Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M, Abeygunawardena N, Berube H, Dylag M, Emam I, Farne A, et al: ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res 2009, 37: D868-D872. 10.1093/nar/gkn889
Article
CAS
Google Scholar
Hubble J, Demeter J, Jin H, Mao M, Nitzberg M, Reddy TB, Wymore F, Zachariah ZK, Sherlock G, Ball CA: Implementation of GenePattern within the Stanford Microarray Database. Nucleic Acids Res 2009, 37: D898-D901. 10.1093/nar/gkn786
Article
CAS
Google Scholar
Oran Brigham E: The fast Fourier transform and its applications. Upper Saddle River. Prentice-Hall, Inc, NJ, USA; 1988.
Google Scholar
Tominaga D: Periodicity detection method for small-sample time series datasets. Bioinform Biol Insights 2010, 4: 127-136.
Article
Google Scholar
Team RDC: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2011.
Google Scholar
Inc. TM: MATLAB Natick, Massachusetts; 2010.
Harmer SL: The Circadian System in Higher Plants. , Palo Alto; 2009:357-377. Annual Review of Plant Biology
Google Scholar
Nakamichi N: Molecular Mechanisms Underlying the Arabidopsis Circadian Clock. Plant Cell Physiol 2011, 52: 1709-1718. 10.1093/pcp/pcr118
Article
CAS
Google Scholar
Li HM, Altschmied L, Chory J: Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev 1994, 8: 339-349. 10.1101/gad.8.3.339
Article
CAS
Google Scholar
Lu SX, Tobin EM: Chromatin remodeling and the circadian clock: Jumonji C-domain containing proteins. Plant Signal Behav 2011, 6: 810-814. 10.4161/psb.6.6.15171
Article
CAS
Google Scholar
Mas P: Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends Cell Biol 2008, 18: 273-281. 10.1016/j.tcb.2008.03.005
Article
CAS
Google Scholar
Thines B, Harmon FG: Four easy pieces: mechanisms underlying circadian regulation of growth and development. Curr Opin Plant Biol 2011, 14: 31-37. 10.1016/j.pbi.2010.09.009
Article
Google Scholar
Sinclair I, Dunton J: Electronic and Electrical Servicing: Consumer and commercial electronics. 2nd edition. Elsevier, Burlington, MA; 2007.
Google Scholar
Chatterjee P, Mukherjee S, Chaudhuri S, Seetharaman G: Application Of PapoulisGerchberg Method In Image Super-Resolution and Inpainting. Comput J 2009, 52: 80-89.
Article
Google Scholar
Orfanidis S: Introduction to signal processing. Prentice Hall, New Jersey, USA; 1995.
Google Scholar
Fowler SG, Cook D, Thomashow MF: Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 2005, 137: 961-968. 10.1104/pp.104.058354
Article
CAS
Google Scholar
B-h L, Henderson DA, Zhu J-K: The Arabidopsis Cold-Responsive Transcriptome and Its Regulation by ICE1. Plant Cell Online 2005, 17: 3155-3175. 10.1105/tpc.105.035568
Article
Google Scholar
Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I: Continuous representations of time-series gene expression data. J Comput Biol 2003, 10: 341-356. 10.1089/10665270360688057
Article
CAS
Google Scholar
Smith AA, Craven M: Fast multisegment alignments for temporal expression profiles. Comput Syst Bioinformatics Conf 2008, 7: 315-326.
Article
Google Scholar
Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 2005, 41: 195-211.
Article
CAS
Google Scholar
Parodi S, Muselli M, Fontana V, Bonassi S: ROC curves are a suitable and flexible tool for the analysis of gene expression profiles. Cytogenet Genome Res 2003, 101: 90-91. 10.1159/000074404
Article
CAS
Google Scholar
Raychaudhuri S, Stuart JM, Altman RB: Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 2000, 5: 455-466.
Google Scholar
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF: Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 1998, 16: 433-442. 10.1046/j.1365-313x.1998.00310.x
Article
CAS
Google Scholar
Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K: Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 2004, 38: 982-993. 10.1111/j.1365-313X.2004.02100.x
Article
CAS
Google Scholar
Fowler S, Thomashow MF: Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway. The Plant Cell Online 2002, 14: 1675-1690. 10.1105/tpc.003483
Article
CAS
Google Scholar
Hundertmark M, Hincha DK: LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 2008, 9: 118. 10.1186/1471-2164-9-118
Article
Google Scholar
Boerjan W, Ralph J, Baucher M: Lignin biosynthesis. Annu Rev Plant Biol. 2003, 54: 519-546. 10.1146/annurev.arplant.54.031902.134938
Article
CAS
Google Scholar
Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J: Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 1997, 11: 429-441. 10.1046/j.1365-313X.1997.11030429.x
Article
CAS
Google Scholar
Solecka D: Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiologiae Plantarum 1997, 19: 257-268. 10.1007/s11738-997-0001-1
Article
CAS
Google Scholar
Athanasiou K, Dyson BC, Webster RE, Johnson GN: Dynamic acclimation of photosynthesis increases plant fitness in changing environments. Plant Physiol 2010, 152: 366-373. 10.1104/pp.109.149351
Article
CAS
Google Scholar
Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK: Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 2006, 142: 98-112. 10.1104/pp.106.081141
Article
CAS
Google Scholar
Onda Y, Yagi Y, Saito Y, Takenaka N, Toyoshima Y: Light induction of Arabidopsis SIG1 and SIG5 transcripts in mature leaves: differential roles of cryptochrome 1 and cryptochrome 2 and dual function of SIG5 in the recognition of plastid promoters. Plant J 2008, 55: 968-978. 10.1111/j.1365-313X.2008.03567.x
Article
CAS
Google Scholar
Yao J, Roy-Chowdhury S, Allison LA: AtSig5 Is an Essential Nucleus-Encoded Arabidopsis σ-Like Factor. Plant Physiol 2003, 132: 739-747. 10.1104/pp.102.017913
Article
CAS
Google Scholar
Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, et al: The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 2008, 36: D1009-1014.
Article
CAS
Google Scholar
Soitamo A, Piippo M, Allahverdiyeva Y, Battchikova N, Aro E-M: Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biology 2008, 8: 13. 10.1186/1471-2229-8-13
Article
Google Scholar
Ma S, Bohnert H: Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 2007, 8: R49. 10.1186/gb-2007-8-4-r49
Article
Google Scholar
Xin Z, Mandaokar A, Chen J, Last RL, Browse J: Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J 2007, 49: 786-799. 10.1111/j.1365-313X.2006.02994.x
Article
CAS
Google Scholar
Katoh A, Uenohara K, Akita M, Hashimoto T: Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol 2006, 141: 851-857. 10.1104/pp.106.081091
Article
CAS
Google Scholar
Ruiz JM, Sanchez E, Garcia PC, Lopez-Lefebre LR, Rivero RM, Romero L: Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry 2002, 59: 473-478. 10.1016/S0031-9422(01)00481-2
Article
CAS
Google Scholar
Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F: Genome-wide analysis of hydrogen peroxide-regulated gene expression in arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 2005, 139: 806-821. 10.1104/pp.105.065896
Article
CAS
Google Scholar
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B: Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 2007, 50: 660-677. 10.1111/j.1365-313X.2007.03078.x
Article
CAS
Google Scholar
Korn M, Peterek S, Mock HP, Heyer AG, Hincha DK: Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ 2008, 31: 813-827. 10.1111/j.1365-3040.2008.01800.x
Article
CAS
Google Scholar
Jonassen E, Lea U, Lillo C: HY5 & HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta 2008, 227: 559-564. 10.1007/s00425-007-0638-4
Article
CAS
Google Scholar
Zhang Y, Zheng S, Liu Z, Wang L, Bi Y: Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J Plant Physiol 2011, 168: 367-374. 10.1016/j.jplph.2010.07.025
Article
CAS
Google Scholar
Sappl PG, Onate-Sanchez L, Singh KB, Millar AH: Proteomic analysis of glutathione S -transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Mol Biol 2004, 54: 205-219.
Article
CAS
Google Scholar
Lin WH, Ye R, Ma H, Xu ZH, Xue HW: DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Res 2004, 14: 34-45. 10.1038/sj.cr.7290200
Article
CAS
Google Scholar
Vergnolle C, Vaultier M-N, Taconnat L, Renou J-P, Kader J-C, Zachowski A, Ruelland E: The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in arabidopsis cell suspensions. Plant Physiol 2005, 139: 1217-1233. 10.1104/pp.105.068171
Article
CAS
Google Scholar
Huang D, Wu W, Abrams SR, Cutler AJ: The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 2008, 59: 2991-3007. 10.1093/jxb/ern155
Article
CAS
Google Scholar
Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF: Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 2002, 130: 2129-2141. 10.1104/pp.008532
Article
CAS
Google Scholar
Tepperman JM, Hwang Y-S, Quail PH: phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Plant J 2006, 48: 728-742. 10.1111/j.1365-313X.2006.02914.x
Article
CAS
Google Scholar
Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW: Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. The Plant Cell Online 2007, 19: 731-749. 10.1105/tpc.106.047688
Article
CAS
Google Scholar
Larkindale J, Vierling E: Core genome responses involved in acclimation to high temperature. Plant Physiol 2008, 146: 748-761.
Article
CAS
Google Scholar
Li J, Brader G, Palva ET: The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. Plant Cell Online 2004, 16: 319-331. 10.1105/tpc.016980
Article
CAS
Google Scholar
Hudson ME, Lisch DR, Quail PH: The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 2003, 34: 453-471. 10.1046/j.1365-313X.2003.01741.x
Article
CAS
Google Scholar
Kumagai T, Ito S, Nakamichi N, Niwa Y, Murakami M, Yamashino T, Mizuno T: The common function of a novel subfamily of B-Box zinc finger proteins with reference to circadian-associated events in Arabidopsis thaliana. Biosci Biotechnol Biochem 2008, 72: 1539-1549. 10.1271/bbb.80041
Article
CAS
Google Scholar
Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X, Quail PH: Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J 2004, 38: 725-739. 10.1111/j.1365-313X.2004.02084.x
Article
CAS
Google Scholar
Khanna R, Shen Y, Toledo-Ortiz G, Kikis EA, Johannesson H, Hwang Y-S, Quail PH: Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in arabidopsis are necessary for optimal deetiolation. Plant Cell Online 2006, 18: 2157-2171. 10.1105/tpc.106.042200
Article
CAS
Google Scholar