Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000; 403(6767):339–42.
Article
CAS
PubMed
Google Scholar
Kramer BP, Viretta AU, Daoud-El-Baba M, Aubel D, Weber W, Fussenegger M. An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol. 2004; 22(7):867–70.
Article
CAS
PubMed
Google Scholar
Isaacs FJ, Hasty J, Cantor CR, Collins JJ. Proc Nat Acad Sci USA. 2003; 100(13):7714–9.
Ham TS, Lee SK, Keasling JD, Arkin AP. Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory. PLoS ONE. 2008; 3(7):2815.
Article
Google Scholar
Deans TL, Cantor CR, Collins JJ. A Tunable Genetic Switch Based on RNAi and Repressor Proteins for Regulating Gene Expression in Mammalian Cells. Cell. 2007; 130(2):363–72.
Article
CAS
PubMed
Google Scholar
Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ. Synthetic gene networks that count. Science. 2009; 324(5931):1199–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature. 2008; 456(7221):516–9.
Article
CAS
PubMed
Google Scholar
Fung E, Wong WW, Suen JK, Bulter T, Lee SG, Liao JC. A synthetic gene–metabolic oscillator. Nature. 2005; 435(7038):118–22.
Article
CAS
PubMed
Google Scholar
Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable synthetic mammalian oscillator. Nature. 2009; 457(7227):309–12.
Article
CAS
PubMed
Google Scholar
Basu S, Mehreja R, Thiberge S, Chen MT, Weiss R. Proc Nat Acad Sci USA. 2004; 101(17):6355–360.
Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA. Genetic circuit design automation. Science. 2016; 352(6281):aac7341. doi:http://dx.doi.org/10.1126/science.aac7341.
Lu TK, Khalil AS, Collins JJ. Next-generation synthetic gene networks. Nat Biotechnol. 2009; 27(12):1139–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardinale S, Arkin AP. Contextualizing context for synthetic biology Ű identifying causes of failure of synthetic biological systems. Biotechnol J.2012.doi:http://dx.doi.org/10.1002/biot.201200085.
Del Vecchio D. Modularity, context-dependence, and insulation in engineered biological circuits. Trends Biotechnol. 2015; 33(2):111–9.
Article
CAS
PubMed
Google Scholar
Ceroni F, Algar R, Stan GB, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods. 2015; 12(5):415–8. doi:http://dx.doi.org/10.1038/nmeth.3339.
Shetty RP, Endy D, Knight TF. Engineering BioBrick vectors from BioBrick parts. J Biol Eng. 2008; 2:5–5.
Article
PubMed
PubMed Central
Google Scholar
Galdzicki M, Rodriguez C, Chandran D, Sauro HM, Gennari JH. Standard biological parts knowledgebase. PLoS ONE. 2011; 6(2):17005.
Article
Google Scholar
Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJJ, Mai Q-AA, Tran AB, Paull M, Keasling JD, Arkin AP, Endy D. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods. 2013; 10(4):354–60. doi:http://dx.doi.org/10.1038/nmeth.2404.
Nielsen AA, Segall-Shapiro TH, Voigt CA. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr Opinion Chem Biol. 2013; 17(6):878–92. doi:http://dx.doi.org/10.1016/j.cbpa.2013.10.003.
Beal J, Weiss R, Densmore D, Adler A, Appleton E, Babb J, Bhatia S, Davidsohn N, Haddock T, Loyall J, Schantz R, Vasilev V, Yaman F. An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synthetic Biol. 2012; 1(8):317–31. doi:http://dx.doi.org/10.1021/sb300030d.
Yaman F, Bhatia S, Adler A, Densmore D, Beal J. Automated selection of synthetic biology parts for genetic regulatory networks. ACS Synthetic Biol. 2012; 1(8):332–44.
Article
CAS
Google Scholar
Atkinson MR, Savageau MA, Myers JT, Ninfa AJ. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell. 2003; 113(5):597–607.
Article
CAS
PubMed
Google Scholar
Lou C, Liu X, Ni M, Huang Y, Huang Q, Huang L, Jiang L, Lu D, Wang M, Liu C, Chen D, Chen C, Chen X, Yang L, Ma H, Chen J, Ouyang Q. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol Syst Biol. 2010; 6. doi:http://dx.doi.org/10.1038/msb.2010.2.
Litcofsky KD, Afeyan RB, Krom RJ, Khalil AS, Collins JJ. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nat Methods. 2012; 9(11):1077–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Veening JW, Smits WK, Kuipers OP. Bistability, epigenetics, and bet-hedging in bacteria. Microbiology. 2008; 62:193–210.
Article
CAS
Google Scholar
Ellis T, Wang X, Collins JJ. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol. 2009; 27(5):465–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ. Programmable cells: interfacing natural and engineered gene networks. Proc Nat Acad Sci USA. 2004; 101(22):8414–419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherry JL, Adler FR. How to make a biological switch,. J Theor Biol. 2000; 203(2):117–33.
Article
CAS
PubMed
Google Scholar
Warren PB, ten Wolde PR. Enhancement of the Stability of Genetic Switches by Overlapping Upstream Regulatory Domains. Phys Rev Lett. 2004; 92(12):128101.
Article
PubMed
Google Scholar
Walczak AM, Onuchic JN, Wolynes PG. Absolute rate theories of epigenetic stability. Proc Nat Acad Sci USA. 2005; 102(52):18926–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warren PB, ten Wolde PR. Chemical models of genetic toggle switches. J Phys Chem B. 2005; 109(14):6812–23.
Article
CAS
PubMed
Google Scholar
Lipshtat A, Loinger A, Balaban NQ, Biham O. Genetic toggle switch without cooperative binding. Phys Rev Lett. 2006; 96(18):188101.
Article
PubMed
Google Scholar
Ma R, Wang J, Hou Z, Liu H. Small-number effects: a third stable state in a genetic bistable toggle switch. Phys Rev Lett. 2012; 109(24):248107.
Article
PubMed
Google Scholar
Biancalani T, Assaf M. Genetic Toggle Switch in the Absence of Cooperative Binding: Exact Results. Phys Rev Lett. 2015; 115:208101.
Article
PubMed
Google Scholar
Loinger A, Lipshtat A, Balaban NQ, Biham O. Stochastic simulations of genetic switch systems. Phys Rev E Stat Nonlin Soft Matter Phys. 2007; 75(2 Pt 1):021904.
Article
PubMed
Google Scholar
Pedersen MG, Bersani AM, Bersani E. Quasi steady-state approximations in complex intracellular signal transduction networks – a word of caution. J Math Chem. 2007; 43(4):1318–44.
Article
Google Scholar
Guantes R, Poyatos JF. Multistable decision switches for flexible control of epigenetic differentiation. PLoS Comput Biol. 2008; 4(11):1000235.
Article
Google Scholar
Lu M, Onuchic J, Ben-Jacob E. Construction of an Effective Landscape for Multistate Genetic Switches. Phys Rev Lett. 2014; 113(7):078102.
Article
PubMed
Google Scholar
Dasika MS, Maranas CD. Optcircuit: an optimization based method for computational design of genetic circuits. BMC Syst Biol. 2008; 2(1):1.
Article
Google Scholar
Otero-Muras I, Banga JR. Multicriteria global optimization for biocircuit design. BMC Syst Biol. 2014; 8:113.
Article
PubMed
PubMed Central
Google Scholar
Otero-Muras I, Banga JR. Exploring design principles of gene regulatory networks via pareto optimality. IFAC-PapersOnLine. 2016; 49(7):809–14. doi:http://dx.doi.org/10.1016/j.ifacol.2016.07.289. 11th {IFAC} Symposium on Dynamics and Control of Process SystemsIncluding Biosystems DYCOPS-CAB 2016Trondheim, Norway, 6–8 June 2016.
Rodrigo G, Carrera J, Jaramillo A. Computational design of synthetic regulatory networks from a genetic library to characterize the designability of dynamical behaviors. Nucleic Acids Res. 2011; 39(20):138–8.
Article
Google Scholar
Baetica AA, Yuan Y, Gonçalves JM, Murray RM. A stochastic framework for the design of transient and steady state behavior of biochemical reaction networks. In: 54th IEEE Conference on Decision and Control, CDC 2015, Osaka, Japan, December 15–18, 2015: 2015. p. 3199–205. doi:http://dx.doi.org/10.1109/CDC.2015.7402699. http://dx.doi.org/10.1109/CDC.2015.7402699.
Barnes CP, Silk D, Sheng X, Stumpf MPH. Proc Nat Acad Sci USA. 2011; 108(37):15190–15195.
Del Moral P, Doucet A, Jasra A. Sequential monte carlo samplers. J R Stat Soc Series B (Statistical Methodology). 2006; 68(3):411–36.
Article
Google Scholar
Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface / R Soc. 2009; 6(31):187–202.
Article
Google Scholar
Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW. Population growth of human Y chromosomes: A study of Y chromosome microsatellites. Mol Biol Evol. 1999; 16(12):1791–8.
Article
CAS
PubMed
Google Scholar
Marjoram P, Molitor J, Plagnol V, Tavare S. Markov chain Monte Carlo without likelihoods. Proc Nat Acad Sci USA. 2003; 100(26):15324–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sisson SA, Fan Y, Tanaka MM. Sequential Monte Carlo without likelihoods. Proc Nat Acad Sci USA. 2007; 104(6):1760–1765.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKay MD, Beckman RJ, Conover WJ. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 2000; 42(1):55–61.
Article
Google Scholar
Lloyd SP. Least squares quantization in PCM. IEEE Trans Inf Theory. 1982; 28(2):129–137.
Article
Google Scholar
Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc B. 2001; 63:411–23.
Article
Google Scholar
Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J. SBML Forum. Bioinformatics. 2003; 19(4):524–31.
Article
CAS
PubMed
Google Scholar
Bornstein BJ, Keating SM, Jouraku A, Hucka M. LibSBML: An API Library for SBML. Bioinformatics. 2008; 24(6):880–1. doi:http://dx.doi.org/10.1093/bioinformatics/btn051.
Kirk DB, Hwu W-mW. Programming Massively Parallel Processors. A Hands-on Approach. Burlington: Morgan Kaufmann; 2010.
Google Scholar
Wong WW, Tsai TY, Liao JC. Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator. Mol Syst Biol. 2007; 3:130.
Article
PubMed
PubMed Central
Google Scholar
Woods ML, Leon M, Perez-Carrasco R, Barnes CP. A Statistical Approach Reveals Designs for the Most Robust Stochastic Gene Oscillators. ACS Synthetic Biol. 2016; 5(6):459–70.
Article
CAS
Google Scholar
Lu M, Jolly MK, Gomoto R, Huang B, Onuchic J, Ben-Jacob E. Tristability in cancer-associated microRNA-TF chimera toggle switch. J Phys Chem B. 2013; 117(42):13164–74.
Article
CAS
PubMed
Google Scholar
Huang D, Holtz WJ, Maharbiz MM. A genetic bistable switch utilizing nonlinear protein degradation. J Biol Eng. 2012; 6(1):1–13. doi:http://dx.doi.org/10.1186/1754-1611-6-9.
Clewley R. Hybrid models and biological model reduction with PyDSTool. PLoS Comput Biol. 2012; 8(8):1002628.
Article
Google Scholar
Ghaffarizadeh A, Flann NS, Podgorski GJ. Multistable switches and their role in cellular differentiation networks. BMC Bioinformatics. 2014; 15 Suppl 7:7.
Article
Google Scholar
Cinquin O, Demongeot J. High-dimensional switches and the modelling of cellular differentiation. J Theor Biol. 2005; 233(3):391–411.
Article
CAS
PubMed
Google Scholar
Canton B, Labno A, Endy D. Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol. 2008; 26(7):787–93.
Article
CAS
PubMed
Google Scholar
Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, de Mora K, Glieberman AL, Monie DD, Endy D. Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng. 2009; 3(1):4.
Article
PubMed
PubMed Central
Google Scholar
Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009; 27(10):946–50.
Article
CAS
PubMed
PubMed Central
Google Scholar