O’Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, et al. Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:926–57.
Article
Google Scholar
Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373:1136–52.
Article
Google Scholar
Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, et al. The Wnt/ -Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML. Science. 2010;327:1650–3.
Article
CAS
Google Scholar
Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.
Article
CAS
Google Scholar
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.
Article
Google Scholar
Shah A, Andersson TM-L, Rachet B, Björkholm M, Lambert PC. Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study. Br J Haematol. 2013;162:509–16.
Article
Google Scholar
Dombret H, Gardin C. An update of current treatments for adult acute myeloid leukemia. Blood. 2016;127:53–61.
Article
CAS
Google Scholar
Ofran Y. Is the D14 bone marrow in acute myeloid leukemia still the gold standard? Curr Opin Hematol. 2016;23:108–14.
Article
CAS
Google Scholar
Ravandi F, Cortes JE, Jones D, Faderl S, Garcia-Manero G, Konopleva MY, et al. Phase I/II study of combination therapy with Sorafenib, Idarubicin, and Cytarabine in younger patients with acute myeloid leukemia. J Clin Oncol. 2010;28:1856–62.
Article
CAS
Google Scholar
Leonard SM, Perry T, Woodman CB, Kearns P. Sequential treatment with Cytarabine and Decitabine has an increased anti-leukemia effect compared to Cytarabine alone in xenograft models of childhood acute myeloid leukemia. PLoS One. 2014;9:e87475.
Article
Google Scholar
Ersvaer E, Brenner AK, Vetås K, Reikvam H, Bruserud Ø. Effects of cytarabine on activation of human T cells – cytarabine has concentration-dependent effects that are modulated both by valproic acid and all-trans retinoic acid. BMC Pharmacol Toxicol. 2015;16:12.
Article
Google Scholar
Sekeres MA, Elson P, Kalaycio ME, Advani AS, Copelan EA, Faderl S, et al. Time from diagnosis to treatment initiation predicts survival in younger, but not older, acute myeloid leukemia patients. Blood. 2009;113:28–36.
Article
CAS
Google Scholar
Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J R Soc Interface. 2014;11:20140079.
Article
Google Scholar
Getto P, Marciniak-Czochra A, Nakata Y, dM VM. Global dynamics of two-compartment models for cell production systems with regulatory mechanisms. Math Biosci. 2013;245:258–68.
Article
Google Scholar
Marciniak-Czochra A, Stiehl T, Ho AD, Jäger W, Wagner W. Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 2009;18:377–86.
Article
CAS
Google Scholar
Stiehl T, Marciniak-Czochra A. Mathematical modeling of Leukemogenesis and Cancer stem cell dynamics. Math Model Nat Phenom. 2012;7:166–202.
Article
Google Scholar
Cai J, Damaraju VL, Groulx N, Mowles D, Peng Y, Robins MJ, et al. Two distinct molecular mechanisms underlying Cytarabine resistance in human leukemic cells. Cancer Res. 2008;68:2349–57.
Article
CAS
Google Scholar
Galmarini CM, Thomas X, Calvo F, Rousselot P, Rabilloud M, El Jaffari A, et al. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol. 2002;117:860–8.
Article
CAS
Google Scholar
Sawyer DB, Peng X, Chen B, Pentassuglia L, Lim CC. Mechanisms of anthracycline cardiac injury: can we identify strategies for Cardioprotection? Prog Cardiovasc Dis. 2010;53:105–13.
Article
CAS
Google Scholar
Minderman H, Linssen PC, Wessels JM, Haanen C. Doxorubicin toxicity in relation to the proliferative state of human hematopoietic cells. Exp Hematol. 1991;19:110–4.
CAS
PubMed
Google Scholar
Minderman H, Linssen P, van der Lely N, Wessels J, Boezeman J, de Witte T, Haanen C. Toxicity of idarubicin and doxorubicin towards normal and leukemic human bone marrow progenitors in relation to their proliferative state. Leukemia. 1994;8:382–7.
CAS
PubMed
Google Scholar
Denard B, Lee C, Ye J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. elife. 2012;1:e00090.
Article
Google Scholar
Shinjo K, Takeshita A, Ohnishi K, Ohno R. Granulocyte Colony-stimulating factor receptor at various differentiation stages of Normal and leukemic hematopoietic cells. Leuk Lymphoma. 1997;25:37–46.
Article
CAS
Google Scholar
Kawada H, Sasao T, Yonekura S, Hotta T. Clinical significance of granulocyte colony-stimulating factor (G-CSF) receptor expression in acute myeloid leukemia. Leuk Res. 1998;22:31–7.
Article
CAS
Google Scholar
McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J, et al. STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity. 2001;14:193–204.
Article
CAS
Google Scholar
Lee C, Raz R, Gimeno R, Gertner R, Wistinghausen B, Takeshita K, et al. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity. 2002;17:63–72.
Article
CAS
Google Scholar
Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine. 2008;42:277–88.
Article
CAS
Google Scholar
Benekli M, Xia Z, Donohue KA, Ford LA, Pixley LA, Baer MR, et al. Constitutive activity of signal transducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease-free survival. Blood. 2002;99:252–7.
Article
CAS
Google Scholar
Redell MS, Ruiz MJ, Alonzo TA, Gerbing RB, Tweardy DJ. Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. Blood. 2011;117:5701–9.
Article
CAS
Google Scholar
Hou H-A, Lu J-W, Lin T-Y, Tsai C-H, Chou W-C, Lin C-C, et al. Clinico-biological significance of suppressor of cytokine signaling 1 expression in acute myeloid leukemia. Blood Cancer J. 2017;7:e588.
Article
Google Scholar
Jiang M, Zhang W-W, Liu P, Yu W, Liu T, Yu J. Dysregulation of SOCS-Mediated Negative Feedback of Cytokine Signaling in Carcinogenesis and Its Significance in Cancer Treatment. Front Immunol. 2017;8:70.
PubMed
PubMed Central
Google Scholar
R Core Team (2014). R: A language and environment for statistical computing. R Found Stat Comput. Vienna: R Foundation for Statistical Computing; 2014. https://www.r-project.org.
Soetaert K, Petzoldt T, Setzer RW. Solving differential equations in R: package deSolve. J Stat Softw. 2010;33:1–25.
Google Scholar
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.
Article
CAS
Google Scholar
Percival M-E, Lai C, Estey E, Hourigan CS. Bone marrow evaluation for diagnosis and monitoring of acute myeloid leukemia. Blood Rev. 2017;31:185–92.
Article
Google Scholar
Majeti R. Clonal evolution of pre-leukemic hematopoietic stem cells precedes human acute myeloid leukemia. Best Pract Res Clin Haematol. 2014;27:229–34.
Article
CAS
Google Scholar
Ran D, Schubert M, Taubert I, Eckstein V, Bellos F, Jauch A, et al. Heterogeneity of leukemia stem cell candidates at diagnosis of acute myeloid leukemia and their clinical significance. Exp Hematol. 2012;40:155–65.
Article
CAS
Google Scholar
Lichtman MA. A historical perspective on the development of the cytarabine (7days) and daunorubicin (3days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol Dis. 2013;50:119–30.
Article
CAS
Google Scholar
Stone RM. The difficult problem of acute myeloid leukemia in the older adult. CA Cancer J Clin. 2002;52:363–71.
Article
Google Scholar
Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res. 2015;75:940–9.
Article
CAS
Google Scholar
Brons PP, Haanen C, Boezeman JB, Muus P, Holdrinet RS, Pennings AH, et al. Proliferation patterns in acute myeloid leukemia: leukemic clonogenic growth and in vivo cell cycle kinetics. Ann Hematol. 1993;66:225–33.
Article
CAS
Google Scholar
Del Cañizo MC, Brufau A, Almeida J, Galende J, García Marcos MA, Mota A, et al. In vitro growth in acute myeloblastic leukaemia: relationship with other clinico-biological characteristics of the disease. Br J Haematol. 1998;103:137–42.
Article
Google Scholar
Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al. Clonal dynamics of native haematopoiesis. Nature. 2014;514:322–7.
Article
CAS
Google Scholar
Klaus J, Herrmann D, Breitkreutz I, Hegenbart U, Mazitschek U, Egerer G, et al. Effect of CD34+ cell dose on hematopoietic reconstitution and outcome in 508 patients with multiple myeloma undergoing autologous peripheral blood stem cell transplantation. Eur J Haematol. 2007;78:21–8.
Article
Google Scholar
Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. Blood. 1998;92:2322–33.
CAS
PubMed
Google Scholar
Köhnke T, Sauter D, Ringel K, Hoster E, Laubender RP, Hubmann M, et al. Early assessment of minimal residual disease in AML by flow cytometry during aplasia identifies patients at increased risk of relapse. Leukemia. 2015;29:377–86.
Article
Google Scholar
Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:264–78.
Article
CAS
Google Scholar
Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Görlich D, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128:686–98.
Article
CAS
Google Scholar
McLornan DP, McMullin MF, Johnston P, Longley DB. Molecular mechanisms of drug resistance in acute myeloid leukaemia. Expert Opin Drug Metab Toxicol. 2007;3:363–77.
Article
CAS
Google Scholar
Hermanson DL, Das SG, Li Y, Xing C. Overexpression of Mcl-1 confers multidrug resistance, whereas topoisomerase IIβ downregulation introduces mitoxantrone-specific drug resistance in acute myeloid leukemia. Mol Pharmacol. 2013;84:236–43.
Article
CAS
Google Scholar
Löwenberg B, Ossenkoppele GJ, van Putten W, Schouten HC, Graux C, Ferrant A, et al. High-dose Daunorubicin in older patients with acute myeloid leukemia. N Engl J Med. 2009;361:1235–48.
Article
Google Scholar
Fernandez HF, Sun Z, Yao X, Litzow MR, Luger SM, Paietta EM, et al. Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med. 2009;361:1249–59.
Article
CAS
Google Scholar
Ohtake S, Miyawaki S, Fujita H, Kiyoi H, Shinagawa K, Usui N, et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: the JALSGAML201 study. Blood. 2011;117:2358–65.
Article
CAS
Google Scholar
Yin JAL, O’Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by RT-qPCR in core-binding factor AML allows risk-stratification and predicts relapse: results of the UK MRC AML-15 trial. Blood. 2012;120:2826–35.
Article
CAS
Google Scholar
Pigazzi M, Manara E, Buldini B, Beqiri V, Bisio V, Tregnago C, et al. Minimal residual disease monitored after induction therapy by rq-pcr can contribute to tailor treatment of patients with t(8;21) runx1-runx1t1 rearrangement. Haematologica. 2015;100:e99–101.
Article
Google Scholar
Hourigan CS, Karp JE. Minimal residual disease in acute myeloid leukaemia. Nat Rev Clin Oncol. 2013;10:460–71.
Article
CAS
Google Scholar
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik V, Paschka P, Roberts N, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2202–21.
Article
Google Scholar
Norkin M, Chang M, An Q, Leather H, Katragadda L, Li Y, et al. A new model to predict remission status in AML patients based on day 14 bone marrow biopsy. Leuk Res. 2016;46:69–73.
Article
Google Scholar
Morris TA, DeCastro CM, Diehl LF, Gockerman JP, Lagoo AS, Li Z, et al. Re-induction therapy decisions based on day 14 bone marrow biopsy in acute myeloid leukemia. Leuk Res. 2013;37:28–31.
Article
Google Scholar
Ofran Y, Leiba R, Ganzel C, Saban R, Gatt M, Ram R, et al. Prospective comparison of early bone marrow evaluation on day 5 versus day 14 of the “3+7” induction regimen for acute myeloid leukemia. Am J Hematol. 2015;90:1159–64.
Article
Google Scholar
Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366:1079–89.
Article
CAS
Google Scholar
Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88:318–27.
Article
CAS
Google Scholar
Estey E. Acute myeloid leukemia: 2016 update on risk-stratification and management. Am J Hematol. 2016;91:824–46.
Article
Google Scholar
Schlenk RF. Post-remission therapy for acute myeloid leukemia. Haematologica. 2014;99:1663–70.
Article
CAS
Google Scholar
Kohl P, Crampin EJ, Quinn TA, Noble D. Systems biology: an approach. Clin Pharmacol Ther. 2010;88:25–33.
Article
CAS
Google Scholar
Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–4.
Article
CAS
Google Scholar
Antony PMA, Balling R, Vlassis N. From systems biology to systems biomedicine. Curr Opin Biotechnol. 2012;23:604–8.
Article
CAS
Google Scholar
Burnett AK, Russell NH, Hills RK, Kell J, Cavenagh J, Kjeldsen L, et al. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood. 2015;125:3878–85.
Article
CAS
Google Scholar
Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. Lancet. 2013;381:484–95.
Article
Google Scholar
Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60.
Article
CAS
Google Scholar
Löwenberg B, Pabst T, Vellenga E, van Putten W, Schouten HC, Graux C, et al. Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364:1027–36.
Article
Google Scholar
Campuzano-Zuluaga G, Deutsch Y, Salzberg M, Gomez A, Vargas F, Elias R, et al. Routine interim disease assessment in patients undergoing induction chemotherapy for acute myeloid leukemia: can we do better? Am J Hematol. 2016;91:277–82.
Article
Google Scholar
Rowe JM, Kim HT, Cassileth PA, Lazarus HM, Litzow MR, Wiernik PH, et al. Adult patients with acute myeloid leukemia who achieve complete remission after 1 or 2 cycles of induction have a similar prognosis. Cancer. 2010;116:5012–21.
Article
Google Scholar
Kern W, Voskova D, Schoch C, Schnittger S, Hiddemann W, Haferlach T. Prognostic impact of early response to induction therapy as assessed by multiparameter flow cytometry in acute myeloid leukemia. Haematologica. 2004;89:528–40.
PubMed
Google Scholar
Pullarkat V, Aldoss I. Prognostic and therapeutic implications of early treatment response assessment in acute myeloid leukemia. Crit Rev Oncol Hematol. 2015;95:38–45.
Article
Google Scholar
Arellano M, Pakkala S, Langston A, Tighiouart M, Pan L, Chen Z, et al. Early clearance of peripheral blood blasts predicts response to induction chemotherapy in acute myeloid leukemia. Cancer. 2012;118:5278–82.
Article
Google Scholar