Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, et al.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003, 161 (6): 1163-1177. 10.1083/jcb.200302047

PubMed Central
CAS
PubMed
Google Scholar

Semenza GL: Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda). 2004, 19: 176-182.

CAS
Google Scholar

Jiang BH, Semenza GL, Bauer C, Marti HH: Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 1996, 271 (4 Pt 1): C1172-1180.

CAS
PubMed
Google Scholar

Yamazaki Y, Morita T: Molecular and functional diversity of vascular endothelial growth factors. Mol Divers. 2006, 10 (4): 515-527. 10.1007/s11030-006-9027-3

CAS
PubMed
Google Scholar

Roskoski R: Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol. 2007, 62 (3): 179-213. 10.1016/j.critrevonc.2007.01.006

PubMed
Google Scholar

Bates DO, MacMillan PP, Manjaly JG, Qiu Y, Hudson SJ, Bevan HS, Hunter AJ, Soothill PW, Read M, Donaldson LF, et al.: The endogenous anti-angiogenic family of splice variants of VEGF, VEGFxxxb, are down-regulated in pre-eclamptic placentae at term. Clin Sci (Lond). 2006, 110 (5): 575-585.

CAS
Google Scholar

Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, et al.: Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA. 2004, 101 (45): 15949-15954. 10.1073/pnas.0407290101

PubMed Central
CAS
PubMed
Google Scholar

Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T: Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 2004, 18 (20): 2469-2473. 10.1101/gad.1239204

PubMed Central
CAS
PubMed
Google Scholar

Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J: Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 2004, 18 (20): 2474-2478. 10.1101/gad.1239004

PubMed Central
CAS
PubMed
Google Scholar

Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ: Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 2007, 104 (9): 3219-3224. 10.1073/pnas.0611206104

PubMed Central
CAS
PubMed
Google Scholar

Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006, 444 (7122): 1032-1037. 10.1038/nature05355

CAS
PubMed
Google Scholar

Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E, Hughes CC: Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J. 2005, 19 (8): 1027-1029.

CAS
PubMed
Google Scholar

Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, et al.: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007, 445 (7129): 776-780. 10.1038/nature05571

PubMed
Google Scholar

Deakin AS: Model for initial vascular patterns in melanoma transplants. Growth. 1976, 40 (2): 191-201.

CAS
PubMed
Google Scholar

Balding D, McElwain DL: A mathematical model of tumour-induced capillary growth. J Theor Biol. 1985, 114 (1): 53-73. 10.1016/S0022-5193(85)80255-1

CAS
PubMed
Google Scholar

Chaplain M, Anderson A: Mathematical modelling of tumour-induced angiogenesis: network growth and structure. Cancer Treat Res. 2004, 117: 51-75.

PubMed
Google Scholar

Chaplain MA, McDougall SR, Anderson AR: Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng. 2006, 8: 233-257. 10.1146/annurev.bioeng.8.061505.095807

CAS
PubMed
Google Scholar

Tong S, Yuan F: Numerical simulations of angiogenesis in the cornea. Microvasc Res. 2001, 61 (1): 14-27. 10.1006/mvre.2000.2282

CAS
PubMed
Google Scholar

Mac Gabhann F, Ji JW, Popel AS: Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy. PLoS Comput Biol. 2006, 2 (9): e127- 10.1371/journal.pcbi.0020127

PubMed Central
PubMed
Google Scholar

Peirce SM, Van Gieson EJ, Skalak TC: Multicellular simulation predicts microvascular patterning and in silico tissue assembly. Faseb J. 2004, 18 (6): 731-733.

CAS
PubMed
Google Scholar

Bauer AL, Jackson TL, Jiang Y: A Cell-Based Model Exhibiting Branching and Anastomosis During Tumor-Induced Angiogenesis. Biophys J. 2007, 92 (9): 3105-3121. 10.1529/biophysj.106.101501

PubMed Central
CAS
PubMed
Google Scholar

Merks RM, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol. 2006, 289 (1): 44-54. 10.1016/j.ydbio.2005.10.003

PubMed Central
CAS
PubMed
Google Scholar

Bentley K, Gerhardt H, Bates PA: Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol. 2008, 250 (1): 25-36. 10.1016/j.jtbi.2007.09.015

CAS
PubMed
Google Scholar

Sun S, Wheeler MF, Obeyesekere M, Patrick CW: A deterministic model of growth factor-induced angiogenesis. Bull Math Biol. 2005, 67 (2): 313-337. 10.1016/j.bulm.2004.07.004

CAS
PubMed
Google Scholar

Jabbarzadeh E, Abrams CF: Strategies to enhance capillary formation inside biomaterials: a computational study. Tissue Eng. 2007, 13 (8): 2073-2086. 10.1089/ten.2006.0057

CAS
PubMed
Google Scholar

Olsen L, Sherratt JA, Maini PK, Arnold F: A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol. 1997, 14 (4): 261-281. 10.1093/imammb/14.4.261

CAS
PubMed
Google Scholar

Mac Gabhann F, Popel AS: Systems biology of vascular endothelial growth factors. Microcirculation. 2008, 15 (8): 715-738. 10.1080/10739680802095964

PubMed Central
CAS
PubMed
Google Scholar

Plank MJ, Sleeman BD: Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol. 2004, 66 (6): 1785-1819. 10.1016/j.bulm.2004.04.001

CAS
PubMed
Google Scholar

Byrne HM, Chaplain MA: Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol. 1995, 57 (3): 461-486.

CAS
PubMed
Google Scholar

Stamper IJ, Byrne HM, Owen MR, Maini PK: Modelling the role of angiogenesis and vasculogenesis in solid tumour growth. Bull Math Biol. 2007, 69 (8): 2737-2772. 10.1007/s11538-007-9253-6

CAS
PubMed
Google Scholar

Qutub AA, Hunt CA: Glucose transport to the brain: a systems model. Brain Res Brain Res Rev. 2005, 49 (3): 595-617. 10.1016/j.brainresrev.2005.03.002

CAS
PubMed
Google Scholar

Liu Y, Hunt CA: Mechanistic study of the cellular interplay of transport and metabolism using the synthetic modeling method. Pharm Res. 2006, 23 (3): 493-505. 10.1007/s11095-006-9505-4

CAS
PubMed
Google Scholar

An G: In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based modeling. Crit Care Med. 2004, 32 (10): 2050-2060. 10.1097/01.CCM.0000139707.13729.7D

CAS
PubMed
Google Scholar

An G: Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J Crit Care. 2006, 21 (1): 105-110. 10.1016/j.jcrc.2005.11.012

PubMed
Google Scholar

Tang J, Ley KF, Hunt CA: Dynamics of in silico leukocyte rolling, activation, and adhesion. BMC Syst Biol. 2007, 1: 14- 10.1186/1752-0509-1-14

PubMed Central
PubMed
Google Scholar

Mansury Y, Deisboeck TS: The impact of "search precision" in an agent-based tumor model. J Theor Biol. 2003, 224 (3): 325-337. 10.1016/S0022-5193(03)00169-3

PubMed
Google Scholar

Mansury Y, Diggory M, Deisboeck TS: Evolutionary game theory in an agent-based brain tumor model: exploring the 'Genotype-Phenotype' link. J Theor Biol. 2006, 238 (1): 146-156. 10.1016/j.jtbi.2005.05.027

PubMed
Google Scholar

Ji JW, Tsoukias NM, Goldman D, Popel AS: A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J Theor Biol. 2006, 241 (1): 94-108. 10.1016/j.jtbi.2005.11.019

PubMed
Google Scholar

Mac Gabhann F, Popel AS: Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am J Physiol Heart Circ Physiol. 2004, 286 (1): H153-164. 10.1152/ajpheart.00254.2003

CAS
PubMed
Google Scholar

Ji JW, Mac Gabhann F, Popel AS: Skeletal Muscle VEGF Gradients in Peripheral Arterial Disease: Simulations of Rest and Exercise. Am J Physiol Heart Circ Physiol. 2007, 293 (6): H3740-3749. 10.1152/ajpheart.00009.2007

CAS
PubMed
Google Scholar

Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C: Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn. 2004, 231 (3): 503-509. 10.1002/dvdy.20148

CAS
PubMed
Google Scholar

Wang WY, Whittles CE, Harper SJ, Bates DO: An adenovirus-mediated gene-transfer model of angiogenesis in rat mesentery. Microcirculation. 2004, 11 (4): 361-375. 10.1080/10739680490437568

CAS
PubMed
Google Scholar

Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, et al.: VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004, 64 (21): 7822-7835. 10.1158/0008-5472.CAN-04-0934

CAS
PubMed
Google Scholar

McLaughlin AP, De Vries GW: Role of PLCgamma and Ca(2+) in VEGF- and FGF-induced choroidal endothelial cell proliferation. Am J Physiol Cell Physiol. 2001, 281 (5): C1448-1456.

CAS
PubMed
Google Scholar

Karagiannis ED, Popel AS: A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J Biol Chem. 2004, 279 (37): 39105-39114. 10.1074/jbc.M403627200

CAS
PubMed
Google Scholar

Karagiannis ED, Popel AS: Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J Theor Biol. 2006, 238 (1): 124-145. 10.1016/j.jtbi.2005.05.020

CAS
PubMed
Google Scholar

Ingber DE: Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res. 2002, 91 (10): 877-887. 10.1161/01.RES.0000039537.73816.E5

CAS
PubMed
Google Scholar

Jamora C, Fuchs E: Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol. 2002, 4 (4): E101-108. 10.1038/ncb0402-e101

CAS
PubMed
Google Scholar

Namy P, Ohayon J, Tracqui P: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J Theor Biol. 2004, 227 (1): 103-120. 10.1016/j.jtbi.2003.10.015

PubMed
Google Scholar

Ingber DE, Prusty D, Sun Z, Betensky H, Wang N: Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech. 1995, 28 (12): 1471-1484. 10.1016/0021-9290(95)00095-X

CAS
PubMed
Google Scholar

Stokes CL, Lauffenburger DA, Williams SK: Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci. 1991, 99 (Pt 2): 419-430.

PubMed
Google Scholar

Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi JH, Claesson-Welsh L, Alitalo K: Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA. 1998, 95 (24): 14389-14394. 10.1073/pnas.95.24.14389

PubMed Central
CAS
PubMed
Google Scholar

Neufeld AH, Jumblatt MM, Matkin ED, Raymond GM: Maintenance of corneal endothelial cell shape by prostaglandin E2: effects of EGF and indomethacin. Invest Ophthalmol Vis Sci. 1986, 27 (10): 1437-1442.

CAS
PubMed
Google Scholar

Nakashio A, Fujita N, Tsuruo T: Topotecan inhibits VEGF- and bFGF-induced vascular endothelial cell migration via downregulation of the PI3K-Akt signaling pathway. Int J Cancer. 2002, 98 (1): 36-41. 10.1002/ijc.10166

CAS
PubMed
Google Scholar

Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, Que I, Lowik C, Timpl R, Olsen BR: Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. Embo J. 1999, 18 (16): 4414-4423. 10.1093/emboj/18.16.4414

PubMed Central
CAS
PubMed
Google Scholar

Noiri E, Lee E, Testa J, Quigley J, Colflesh D, Keese CR, Giaever I, Goligorsky MS: Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol. 1998, 274 (1 Pt 1): C236-244.

CAS
PubMed
Google Scholar

Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, Urness LD, Suh W, Asai J, Kock GA, et al.: Netrins promote developmental and therapeutic angiogenesis. Science. 2006, 313 (5787): 640-644. 10.1126/science.1124704

PubMed Central
CAS
PubMed
Google Scholar

Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M: Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem. 1997, 272 (50): 31582-31588. 10.1074/jbc.272.50.31582

CAS
PubMed
Google Scholar

Meadows KN, Bryant P, Pumiglia K: Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem. 2001, 276 (52): 49289-49298. 10.1074/jbc.M108069200

CAS
PubMed
Google Scholar

Korff T, Kimmina S, Martiny-Baron G, Augustin HG: Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. Faseb J. 2001, 15 (2): 447-457. 10.1096/fj.00-0139com

CAS
PubMed
Google Scholar

Stahl A, Wu X, Wenger A, Klagsbrun M, Kurschat P: Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts: a model for bone replacement grafts. FEBS Lett. 2005, 579 (24): 5338-5342. 10.1016/j.febslet.2005.09.005

CAS
PubMed
Google Scholar

Korff T, Augustin HG: Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci. 1999, 112 (Pt 19): 3249-3258.

CAS
PubMed
Google Scholar

Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG: Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci. 2003, 116 (Pt 12): 2461-2470. 10.1242/jcs.00426

PubMed
Google Scholar

Shraga-Heled N, Kessler O, Prahst C, Kroll J, Augustin H, Neufeld G: Neuropilin-1 and neuropilin-2 enhance VEGF121 stimulated signal transduction by the VEGFR-2 receptor. Faseb J. 2007, 21 (3): 915-926. 10.1096/fj.06-6277com

CAS
PubMed
Google Scholar

Wagle MA, Tranquillo RT: A self-consistent cell flux expression for simultaneous chemotaxis and contact guidance in tissues. J Math Biol. 2000, 41 (4): 315-330. 10.1007/s002850000040

CAS
PubMed
Google Scholar

Scehnet JS, Jiang W, Kumar SR, Krasnoperov V, Trindade A, Benedito R, Djokovic D, Borges C, Ley EJ, Duarte A, et al.: Inhibition of Dll4 mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood. 2007, 109 (11): 4753-4760. 10.1182/blood-2006-12-063933

PubMed Central
CAS
PubMed
Google Scholar

Vernon RB, Sage EH: A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc Res. 1999, 57 (2): 118-133. 10.1006/mvre.1998.2122

CAS
PubMed
Google Scholar

Stokes CL, Rupnick MA, Williams SK, Lauffenburger DA: Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab Invest. 1990, 63 (5): 657-668.

CAS
PubMed
Google Scholar

Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A, Eichmann A: The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA. 2007, 104 (9): 3225-3230. 10.1073/pnas.0611177104

PubMed Central
CAS
PubMed
Google Scholar

Taylor KL, Henderson AM, Hughes CC: Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res. 2002, 64 (3): 372-383. 10.1006/mvre.2002.2443

CAS
PubMed
Google Scholar

Adams RH, Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007, 8 (6): 464-478. 10.1038/nrm2183

CAS
PubMed
Google Scholar

Curatola AM, Moscatelli D, Norris A, Hendricks-Munoz K: Retinal blood vessels develop in response to local VEGF-A signals in the absence of blood flow. Exp Eye Res. 2005, 81 (2): 147-158. 10.1016/j.exer.2005.06.001

CAS
PubMed
Google Scholar

Ryschich E, Schmidt E, Maksan SM, Klar E, Schmidt J: Expansion of endothelial surface by an increase of vessel diameter during tumor angiogenesis in experimental and hepatocellular and pancreatic cancer. World J Gastroenterol. 2004, 10 (21): 3171-3174.

PubMed Central
PubMed
Google Scholar

Montanez E, Casaroli-Marano RP, Vilaro S, Pagan R: Comparative study of tube assembly in three-dimensional collagen matrix and on Matrigel coats. Angiogenesis. 2002, 5 (3): 167-172. 10.1023/A:1023837821062

CAS
PubMed
Google Scholar

Chaplain MA, Anderson AR: Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis. 1996, 16 (4–5): 222-234.

CAS
PubMed
Google Scholar

Qutub A, Popel A: Reactive oxygen species regulate hypoxia-inducible factor HIF1alpha differentially in cancer and ischemia. Mol Cell Biol. 2008, 28: 5106-5119. 10.1128/MCB.00060-08

PubMed Central
CAS
PubMed
Google Scholar

Mac Gabhann F, Popel AS: Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am J Physiol Heart Circ Physiol. 2007, 292 (1): H459-474. 10.1152/ajpheart.00637.2006

CAS
PubMed
Google Scholar

Vempati P, Karagiannis ED, Popel AS: A biochemical model of the matrix metalloproteinase 9 activation and inhibition. J Biol Chem. 2007, 282 (52): 37585-37596. 10.1074/jbc.M611500200

CAS
PubMed
Google Scholar

Qutub AA, Popel AS: Three autocrine feedback loops determine HIF1 alpha expression in chronic hypoxia. Biochim Biophys Acta. 2007, 1773 (10): 1511-1525. 10.1016/j.bbamcr.2007.07.004

PubMed Central
CAS
PubMed
Google Scholar

Qutub AA, Popel AS: A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J Cell Sci. 2006, 119 (Pt 16): 3467-3480. 10.1242/jcs.03087

PubMed Central
CAS
PubMed
Google Scholar

Mac Gabhann F, Popel AS: Differential binding of VEGF isoforms to VEGF receptor 2 in the presence of neuropilin-1: a computational model. Am J Physiol Heart Circ Physiol. 2005, 288 (6): H2851-2860. 10.1152/ajpheart.01218.2004

CAS
PubMed
Google Scholar

Qutub AA, Liu G, Vempati P, Popel AS: Integration of angiogenesis modules at multiple scales: from molecular to tissue. Pac Symp Biocomput. 2009, 316-327.

Google Scholar

Qutub A, Mac Gabhann F, Karagiannis ED, Vempati P, Popel A: Multiscale molecular models of angiogenesis. IEEE Engineering in Medicine and Biology Magazine. 2008

Google Scholar

Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML: Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005, 169 (4): 681-691. 10.1083/jcb.200409115

PubMed Central
CAS
PubMed
Google Scholar

Zhou AL, Egginton S, Brown MD, Hudlicka O: Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat Rec. 1998, 252 (1): 49-63. 10.1002/(SICI)1097-0185(199809)252:1<49::AID-AR6>3.0.CO;2-9

CAS
PubMed
Google Scholar

Meyer GT, Matthias LJ, Noack L, Vadas MA, Gamble JR: Lumen formation during angiogenesis in vitro involves phagocytic activity, formation and secretion of vacuoles, cell death, and capillary tube remodelling by different populations of endothelial cells. Anat Rec. 1997, 249 (3): 327-340. 10.1002/(SICI)1097-0185(199711)249:3<327::AID-AR3>3.0.CO;2-R

CAS
PubMed
Google Scholar

Blacher S, Devy L, Burbridge MF, Roland G, Tucker G, Noel A, Foidart JM: Improved quantification of angiogenesis in the rat aortic ring assay. Angiogenesis. 2001, 4 (2): 133-142. 10.1023/A:1012251229631

CAS
PubMed
Google Scholar

Donovan D, Brown NJ, Bishop ET, Lewis CE: Comparison of three in vitro human 'angiogenesis' assays with capillaries formed in vivo. Angiogenesis. 2001, 4 (2): 113-121. 10.1023/A:1012218401036

CAS
PubMed
Google Scholar

Hudlicka O, Tyler KR: Angiogenesis: The growth of the vascular system. 1986, 94-London: Academic Press

Google Scholar

Yu PK, Yu D, Alder VA, Seydel U, Su E, Cringle SJ: Heterogeneous endothelial cell structure along the porcine retinal microvasculature. Exp Eye Res. 1997, 65 (3): 379-389. 10.1006/exer.1997.0340

CAS
PubMed
Google Scholar

Less JR, Posner MC, Skalak TC, Wolmark N, Jain RK: Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation. 1997, 4 (1): 25-33. 10.3109/10739689709148315

CAS
PubMed
Google Scholar

Kubinova L, Janacek J, Ribaric S, Cebasek V, Erzen I: Three-dimensional study of the capillary supply of skeletal muscle fibres using confocal microscopy. J Muscle Res Cell Motil. 2001, 22 (3): 217-227. 10.1023/A:1012201314440

CAS
PubMed
Google Scholar

Duvernoy H, Delon S, Vannson JL: The vascularization of the human cerebellar cortex. Brain Res Bull. 1983, 11 (4): 419-480. 10.1016/0361-9230(83)90116-8

CAS
PubMed
Google Scholar

Gibson CM, Ryan K, Sparano A, Moynihan JL, Rizzo M, Kelley M, Marble SJ, Laham R, Simons M, McClusky TR, et al.: Angiographic methods to assess human coronary angiogenesis. Am Heart J. 1999, 137 (1): 169-179. 10.1016/S0002-8703(99)70473-4

CAS
PubMed
Google Scholar

Wang BW, Chang H, Lin S, Kuan P, Shyu KG: Induction of matrix metalloproteinases-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res. 2003, 59 (2): 460-469. 10.1016/S0008-6363(03)00428-0

CAS
PubMed
Google Scholar

Harms BD, Bassi GM, Horwitz AR, Lauffenburger DA: Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys J. 2005, 88 (2): 1479-1488. 10.1529/biophysj.104.047365

PubMed Central
CAS
PubMed
Google Scholar

Rupp PA, Czirok A, Little CD: alphavbeta3 integrin-dependent endothelial cell dynamics in vivo. Development. 2004, 131 (12): 2887-2897. 10.1242/dev.01160

CAS
PubMed
Google Scholar

Young WC, Herman IM: Extracellular matrix modulation of endothelial cell shape and motility following injury in vitro. J Cell Sci. 1985, 73: 19-32.

CAS
PubMed
Google Scholar

Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J: Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development. 2007, 134 (5): 839-844. 10.1242/dev.003244

CAS
PubMed
Google Scholar

Williams CK, Li JL, Murga M, Harris AL, Tosato G: Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood. 2006, 107 (3): 931-939. 10.1182/blood-2005-03-1000

PubMed Central
CAS
PubMed
Google Scholar

Shreiber DI, Barocas VH, Tranquillo RT: Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys J. 2003, 84 (6): 4102-4114. 10.1016/S0006-3495(03)75135-2

PubMed Central
CAS
PubMed
Google Scholar

Pankov R, Endo Y, Even-Ram S, Araki M, Clark K, Cukierman E, Matsumoto K, Yamada KM: A Rac switch regulates random versus directionally persistent cell migration. J Cell Biol. 2005, 170 (5): 793-802. 10.1083/jcb.200503152

PubMed Central
CAS
PubMed
Google Scholar

Kouvroukoglou S, Dee KC, Bizios R, McIntire LV, Zygourakis K: Endothelial cell migration on surfaces modified with immobilized adhesive peptides. Biomaterials. 2000, 21 (17): 1725-1733. 10.1016/S0142-9612(99)00205-7

CAS
PubMed
Google Scholar

Lee Y, Markenscoff PA, McIntire LV, Zygourakis K: Characterization of endothelial cell locomotion using a Markov chain model. Biochem Cell Biol. 1995, 73 (7–8): 461-472.

CAS
PubMed
Google Scholar

Gamble JR, Matthias LJ, Meyer G, Kaur P, Russ G, Faull R, Berndt MC, Vadas MA: Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol. 1993, 121 (4): 931-943. 10.1083/jcb.121.4.931

CAS
PubMed
Google Scholar