Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, et al.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003, 161 (6): 1163-1177. 10.1083/jcb.200302047
PubMed Central
CAS
PubMed
Google Scholar
Semenza GL: Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda). 2004, 19: 176-182.
CAS
Google Scholar
Jiang BH, Semenza GL, Bauer C, Marti HH: Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 1996, 271 (4 Pt 1): C1172-1180.
CAS
PubMed
Google Scholar
Yamazaki Y, Morita T: Molecular and functional diversity of vascular endothelial growth factors. Mol Divers. 2006, 10 (4): 515-527. 10.1007/s11030-006-9027-3
CAS
PubMed
Google Scholar
Roskoski R: Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol. 2007, 62 (3): 179-213. 10.1016/j.critrevonc.2007.01.006
PubMed
Google Scholar
Bates DO, MacMillan PP, Manjaly JG, Qiu Y, Hudson SJ, Bevan HS, Hunter AJ, Soothill PW, Read M, Donaldson LF, et al.: The endogenous anti-angiogenic family of splice variants of VEGF, VEGFxxxb, are down-regulated in pre-eclamptic placentae at term. Clin Sci (Lond). 2006, 110 (5): 575-585.
CAS
Google Scholar
Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, et al.: Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA. 2004, 101 (45): 15949-15954. 10.1073/pnas.0407290101
PubMed Central
CAS
PubMed
Google Scholar
Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T: Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 2004, 18 (20): 2469-2473. 10.1101/gad.1239204
PubMed Central
CAS
PubMed
Google Scholar
Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J: Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 2004, 18 (20): 2474-2478. 10.1101/gad.1239004
PubMed Central
CAS
PubMed
Google Scholar
Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ: Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA. 2007, 104 (9): 3219-3224. 10.1073/pnas.0611206104
PubMed Central
CAS
PubMed
Google Scholar
Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006, 444 (7122): 1032-1037. 10.1038/nature05355
CAS
PubMed
Google Scholar
Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E, Hughes CC: Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. Faseb J. 2005, 19 (8): 1027-1029.
CAS
PubMed
Google Scholar
Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, et al.: Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007, 445 (7129): 776-780. 10.1038/nature05571
PubMed
Google Scholar
Deakin AS: Model for initial vascular patterns in melanoma transplants. Growth. 1976, 40 (2): 191-201.
CAS
PubMed
Google Scholar
Balding D, McElwain DL: A mathematical model of tumour-induced capillary growth. J Theor Biol. 1985, 114 (1): 53-73. 10.1016/S0022-5193(85)80255-1
CAS
PubMed
Google Scholar
Chaplain M, Anderson A: Mathematical modelling of tumour-induced angiogenesis: network growth and structure. Cancer Treat Res. 2004, 117: 51-75.
PubMed
Google Scholar
Chaplain MA, McDougall SR, Anderson AR: Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng. 2006, 8: 233-257. 10.1146/annurev.bioeng.8.061505.095807
CAS
PubMed
Google Scholar
Tong S, Yuan F: Numerical simulations of angiogenesis in the cornea. Microvasc Res. 2001, 61 (1): 14-27. 10.1006/mvre.2000.2282
CAS
PubMed
Google Scholar
Mac Gabhann F, Ji JW, Popel AS: Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy. PLoS Comput Biol. 2006, 2 (9): e127- 10.1371/journal.pcbi.0020127
PubMed Central
PubMed
Google Scholar
Peirce SM, Van Gieson EJ, Skalak TC: Multicellular simulation predicts microvascular patterning and in silico tissue assembly. Faseb J. 2004, 18 (6): 731-733.
CAS
PubMed
Google Scholar
Bauer AL, Jackson TL, Jiang Y: A Cell-Based Model Exhibiting Branching and Anastomosis During Tumor-Induced Angiogenesis. Biophys J. 2007, 92 (9): 3105-3121. 10.1529/biophysj.106.101501
PubMed Central
CAS
PubMed
Google Scholar
Merks RM, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol. 2006, 289 (1): 44-54. 10.1016/j.ydbio.2005.10.003
PubMed Central
CAS
PubMed
Google Scholar
Bentley K, Gerhardt H, Bates PA: Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol. 2008, 250 (1): 25-36. 10.1016/j.jtbi.2007.09.015
CAS
PubMed
Google Scholar
Sun S, Wheeler MF, Obeyesekere M, Patrick CW: A deterministic model of growth factor-induced angiogenesis. Bull Math Biol. 2005, 67 (2): 313-337. 10.1016/j.bulm.2004.07.004
CAS
PubMed
Google Scholar
Jabbarzadeh E, Abrams CF: Strategies to enhance capillary formation inside biomaterials: a computational study. Tissue Eng. 2007, 13 (8): 2073-2086. 10.1089/ten.2006.0057
CAS
PubMed
Google Scholar
Olsen L, Sherratt JA, Maini PK, Arnold F: A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol. 1997, 14 (4): 261-281. 10.1093/imammb/14.4.261
CAS
PubMed
Google Scholar
Mac Gabhann F, Popel AS: Systems biology of vascular endothelial growth factors. Microcirculation. 2008, 15 (8): 715-738. 10.1080/10739680802095964
PubMed Central
CAS
PubMed
Google Scholar
Plank MJ, Sleeman BD: Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol. 2004, 66 (6): 1785-1819. 10.1016/j.bulm.2004.04.001
CAS
PubMed
Google Scholar
Byrne HM, Chaplain MA: Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol. 1995, 57 (3): 461-486.
CAS
PubMed
Google Scholar
Stamper IJ, Byrne HM, Owen MR, Maini PK: Modelling the role of angiogenesis and vasculogenesis in solid tumour growth. Bull Math Biol. 2007, 69 (8): 2737-2772. 10.1007/s11538-007-9253-6
CAS
PubMed
Google Scholar
Qutub AA, Hunt CA: Glucose transport to the brain: a systems model. Brain Res Brain Res Rev. 2005, 49 (3): 595-617. 10.1016/j.brainresrev.2005.03.002
CAS
PubMed
Google Scholar
Liu Y, Hunt CA: Mechanistic study of the cellular interplay of transport and metabolism using the synthetic modeling method. Pharm Res. 2006, 23 (3): 493-505. 10.1007/s11095-006-9505-4
CAS
PubMed
Google Scholar
An G: In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based modeling. Crit Care Med. 2004, 32 (10): 2050-2060. 10.1097/01.CCM.0000139707.13729.7D
CAS
PubMed
Google Scholar
An G: Concepts for developing a collaborative in silico model of the acute inflammatory response using agent-based modeling. J Crit Care. 2006, 21 (1): 105-110. 10.1016/j.jcrc.2005.11.012
PubMed
Google Scholar
Tang J, Ley KF, Hunt CA: Dynamics of in silico leukocyte rolling, activation, and adhesion. BMC Syst Biol. 2007, 1: 14- 10.1186/1752-0509-1-14
PubMed Central
PubMed
Google Scholar
Mansury Y, Deisboeck TS: The impact of "search precision" in an agent-based tumor model. J Theor Biol. 2003, 224 (3): 325-337. 10.1016/S0022-5193(03)00169-3
PubMed
Google Scholar
Mansury Y, Diggory M, Deisboeck TS: Evolutionary game theory in an agent-based brain tumor model: exploring the 'Genotype-Phenotype' link. J Theor Biol. 2006, 238 (1): 146-156. 10.1016/j.jtbi.2005.05.027
PubMed
Google Scholar
Ji JW, Tsoukias NM, Goldman D, Popel AS: A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J Theor Biol. 2006, 241 (1): 94-108. 10.1016/j.jtbi.2005.11.019
PubMed
Google Scholar
Mac Gabhann F, Popel AS: Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am J Physiol Heart Circ Physiol. 2004, 286 (1): H153-164. 10.1152/ajpheart.00254.2003
CAS
PubMed
Google Scholar
Ji JW, Mac Gabhann F, Popel AS: Skeletal Muscle VEGF Gradients in Peripheral Arterial Disease: Simulations of Rest and Exercise. Am J Physiol Heart Circ Physiol. 2007, 293 (6): H3740-3749. 10.1152/ajpheart.00009.2007
CAS
PubMed
Google Scholar
Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C: Neuropilin-1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn. 2004, 231 (3): 503-509. 10.1002/dvdy.20148
CAS
PubMed
Google Scholar
Wang WY, Whittles CE, Harper SJ, Bates DO: An adenovirus-mediated gene-transfer model of angiogenesis in rat mesentery. Microcirculation. 2004, 11 (4): 361-375. 10.1080/10739680490437568
CAS
PubMed
Google Scholar
Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, et al.: VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004, 64 (21): 7822-7835. 10.1158/0008-5472.CAN-04-0934
CAS
PubMed
Google Scholar
McLaughlin AP, De Vries GW: Role of PLCgamma and Ca(2+) in VEGF- and FGF-induced choroidal endothelial cell proliferation. Am J Physiol Cell Physiol. 2001, 281 (5): C1448-1456.
CAS
PubMed
Google Scholar
Karagiannis ED, Popel AS: A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J Biol Chem. 2004, 279 (37): 39105-39114. 10.1074/jbc.M403627200
CAS
PubMed
Google Scholar
Karagiannis ED, Popel AS: Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J Theor Biol. 2006, 238 (1): 124-145. 10.1016/j.jtbi.2005.05.020
CAS
PubMed
Google Scholar
Ingber DE: Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res. 2002, 91 (10): 877-887. 10.1161/01.RES.0000039537.73816.E5
CAS
PubMed
Google Scholar
Jamora C, Fuchs E: Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol. 2002, 4 (4): E101-108. 10.1038/ncb0402-e101
CAS
PubMed
Google Scholar
Namy P, Ohayon J, Tracqui P: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J Theor Biol. 2004, 227 (1): 103-120. 10.1016/j.jtbi.2003.10.015
PubMed
Google Scholar
Ingber DE, Prusty D, Sun Z, Betensky H, Wang N: Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech. 1995, 28 (12): 1471-1484. 10.1016/0021-9290(95)00095-X
CAS
PubMed
Google Scholar
Stokes CL, Lauffenburger DA, Williams SK: Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci. 1991, 99 (Pt 2): 419-430.
PubMed
Google Scholar
Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi JH, Claesson-Welsh L, Alitalo K: Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA. 1998, 95 (24): 14389-14394. 10.1073/pnas.95.24.14389
PubMed Central
CAS
PubMed
Google Scholar
Neufeld AH, Jumblatt MM, Matkin ED, Raymond GM: Maintenance of corneal endothelial cell shape by prostaglandin E2: effects of EGF and indomethacin. Invest Ophthalmol Vis Sci. 1986, 27 (10): 1437-1442.
CAS
PubMed
Google Scholar
Nakashio A, Fujita N, Tsuruo T: Topotecan inhibits VEGF- and bFGF-induced vascular endothelial cell migration via downregulation of the PI3K-Akt signaling pathway. Int J Cancer. 2002, 98 (1): 36-41. 10.1002/ijc.10166
CAS
PubMed
Google Scholar
Yamaguchi N, Anand-Apte B, Lee M, Sasaki T, Fukai N, Shapiro R, Que I, Lowik C, Timpl R, Olsen BR: Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. Embo J. 1999, 18 (16): 4414-4423. 10.1093/emboj/18.16.4414
PubMed Central
CAS
PubMed
Google Scholar
Noiri E, Lee E, Testa J, Quigley J, Colflesh D, Keese CR, Giaever I, Goligorsky MS: Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol. 1998, 274 (1 Pt 1): C236-244.
CAS
PubMed
Google Scholar
Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, Urness LD, Suh W, Asai J, Kock GA, et al.: Netrins promote developmental and therapeutic angiogenesis. Science. 2006, 313 (5787): 640-644. 10.1126/science.1124704
PubMed Central
CAS
PubMed
Google Scholar
Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M: Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem. 1997, 272 (50): 31582-31588. 10.1074/jbc.272.50.31582
CAS
PubMed
Google Scholar
Meadows KN, Bryant P, Pumiglia K: Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem. 2001, 276 (52): 49289-49298. 10.1074/jbc.M108069200
CAS
PubMed
Google Scholar
Korff T, Kimmina S, Martiny-Baron G, Augustin HG: Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. Faseb J. 2001, 15 (2): 447-457. 10.1096/fj.00-0139com
CAS
PubMed
Google Scholar
Stahl A, Wu X, Wenger A, Klagsbrun M, Kurschat P: Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts: a model for bone replacement grafts. FEBS Lett. 2005, 579 (24): 5338-5342. 10.1016/j.febslet.2005.09.005
CAS
PubMed
Google Scholar
Korff T, Augustin HG: Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci. 1999, 112 (Pt 19): 3249-3258.
CAS
PubMed
Google Scholar
Fuller T, Korff T, Kilian A, Dandekar G, Augustin HG: Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J Cell Sci. 2003, 116 (Pt 12): 2461-2470. 10.1242/jcs.00426
PubMed
Google Scholar
Shraga-Heled N, Kessler O, Prahst C, Kroll J, Augustin H, Neufeld G: Neuropilin-1 and neuropilin-2 enhance VEGF121 stimulated signal transduction by the VEGFR-2 receptor. Faseb J. 2007, 21 (3): 915-926. 10.1096/fj.06-6277com
CAS
PubMed
Google Scholar
Wagle MA, Tranquillo RT: A self-consistent cell flux expression for simultaneous chemotaxis and contact guidance in tissues. J Math Biol. 2000, 41 (4): 315-330. 10.1007/s002850000040
CAS
PubMed
Google Scholar
Scehnet JS, Jiang W, Kumar SR, Krasnoperov V, Trindade A, Benedito R, Djokovic D, Borges C, Ley EJ, Duarte A, et al.: Inhibition of Dll4 mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood. 2007, 109 (11): 4753-4760. 10.1182/blood-2006-12-063933
PubMed Central
CAS
PubMed
Google Scholar
Vernon RB, Sage EH: A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc Res. 1999, 57 (2): 118-133. 10.1006/mvre.1998.2122
CAS
PubMed
Google Scholar
Stokes CL, Rupnick MA, Williams SK, Lauffenburger DA: Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab Invest. 1990, 63 (5): 657-668.
CAS
PubMed
Google Scholar
Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A, Eichmann A: The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA. 2007, 104 (9): 3225-3230. 10.1073/pnas.0611177104
PubMed Central
CAS
PubMed
Google Scholar
Taylor KL, Henderson AM, Hughes CC: Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res. 2002, 64 (3): 372-383. 10.1006/mvre.2002.2443
CAS
PubMed
Google Scholar
Adams RH, Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007, 8 (6): 464-478. 10.1038/nrm2183
CAS
PubMed
Google Scholar
Curatola AM, Moscatelli D, Norris A, Hendricks-Munoz K: Retinal blood vessels develop in response to local VEGF-A signals in the absence of blood flow. Exp Eye Res. 2005, 81 (2): 147-158. 10.1016/j.exer.2005.06.001
CAS
PubMed
Google Scholar
Ryschich E, Schmidt E, Maksan SM, Klar E, Schmidt J: Expansion of endothelial surface by an increase of vessel diameter during tumor angiogenesis in experimental and hepatocellular and pancreatic cancer. World J Gastroenterol. 2004, 10 (21): 3171-3174.
PubMed Central
PubMed
Google Scholar
Montanez E, Casaroli-Marano RP, Vilaro S, Pagan R: Comparative study of tube assembly in three-dimensional collagen matrix and on Matrigel coats. Angiogenesis. 2002, 5 (3): 167-172. 10.1023/A:1023837821062
CAS
PubMed
Google Scholar
Chaplain MA, Anderson AR: Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastasis. 1996, 16 (4–5): 222-234.
CAS
PubMed
Google Scholar
Qutub A, Popel A: Reactive oxygen species regulate hypoxia-inducible factor HIF1alpha differentially in cancer and ischemia. Mol Cell Biol. 2008, 28: 5106-5119. 10.1128/MCB.00060-08
PubMed Central
CAS
PubMed
Google Scholar
Mac Gabhann F, Popel AS: Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am J Physiol Heart Circ Physiol. 2007, 292 (1): H459-474. 10.1152/ajpheart.00637.2006
CAS
PubMed
Google Scholar
Vempati P, Karagiannis ED, Popel AS: A biochemical model of the matrix metalloproteinase 9 activation and inhibition. J Biol Chem. 2007, 282 (52): 37585-37596. 10.1074/jbc.M611500200
CAS
PubMed
Google Scholar
Qutub AA, Popel AS: Three autocrine feedback loops determine HIF1 alpha expression in chronic hypoxia. Biochim Biophys Acta. 2007, 1773 (10): 1511-1525. 10.1016/j.bbamcr.2007.07.004
PubMed Central
CAS
PubMed
Google Scholar
Qutub AA, Popel AS: A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J Cell Sci. 2006, 119 (Pt 16): 3467-3480. 10.1242/jcs.03087
PubMed Central
CAS
PubMed
Google Scholar
Mac Gabhann F, Popel AS: Differential binding of VEGF isoforms to VEGF receptor 2 in the presence of neuropilin-1: a computational model. Am J Physiol Heart Circ Physiol. 2005, 288 (6): H2851-2860. 10.1152/ajpheart.01218.2004
CAS
PubMed
Google Scholar
Qutub AA, Liu G, Vempati P, Popel AS: Integration of angiogenesis modules at multiple scales: from molecular to tissue. Pac Symp Biocomput. 2009, 316-327.
Google Scholar
Qutub A, Mac Gabhann F, Karagiannis ED, Vempati P, Popel A: Multiscale molecular models of angiogenesis. IEEE Engineering in Medicine and Biology Magazine. 2008
Google Scholar
Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML: Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005, 169 (4): 681-691. 10.1083/jcb.200409115
PubMed Central
CAS
PubMed
Google Scholar
Zhou AL, Egginton S, Brown MD, Hudlicka O: Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat Rec. 1998, 252 (1): 49-63. 10.1002/(SICI)1097-0185(199809)252:1<49::AID-AR6>3.0.CO;2-9
CAS
PubMed
Google Scholar
Meyer GT, Matthias LJ, Noack L, Vadas MA, Gamble JR: Lumen formation during angiogenesis in vitro involves phagocytic activity, formation and secretion of vacuoles, cell death, and capillary tube remodelling by different populations of endothelial cells. Anat Rec. 1997, 249 (3): 327-340. 10.1002/(SICI)1097-0185(199711)249:3<327::AID-AR3>3.0.CO;2-R
CAS
PubMed
Google Scholar
Blacher S, Devy L, Burbridge MF, Roland G, Tucker G, Noel A, Foidart JM: Improved quantification of angiogenesis in the rat aortic ring assay. Angiogenesis. 2001, 4 (2): 133-142. 10.1023/A:1012251229631
CAS
PubMed
Google Scholar
Donovan D, Brown NJ, Bishop ET, Lewis CE: Comparison of three in vitro human 'angiogenesis' assays with capillaries formed in vivo. Angiogenesis. 2001, 4 (2): 113-121. 10.1023/A:1012218401036
CAS
PubMed
Google Scholar
Hudlicka O, Tyler KR: Angiogenesis: The growth of the vascular system. 1986, 94-London: Academic Press
Google Scholar
Yu PK, Yu D, Alder VA, Seydel U, Su E, Cringle SJ: Heterogeneous endothelial cell structure along the porcine retinal microvasculature. Exp Eye Res. 1997, 65 (3): 379-389. 10.1006/exer.1997.0340
CAS
PubMed
Google Scholar
Less JR, Posner MC, Skalak TC, Wolmark N, Jain RK: Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation. 1997, 4 (1): 25-33. 10.3109/10739689709148315
CAS
PubMed
Google Scholar
Kubinova L, Janacek J, Ribaric S, Cebasek V, Erzen I: Three-dimensional study of the capillary supply of skeletal muscle fibres using confocal microscopy. J Muscle Res Cell Motil. 2001, 22 (3): 217-227. 10.1023/A:1012201314440
CAS
PubMed
Google Scholar
Duvernoy H, Delon S, Vannson JL: The vascularization of the human cerebellar cortex. Brain Res Bull. 1983, 11 (4): 419-480. 10.1016/0361-9230(83)90116-8
CAS
PubMed
Google Scholar
Gibson CM, Ryan K, Sparano A, Moynihan JL, Rizzo M, Kelley M, Marble SJ, Laham R, Simons M, McClusky TR, et al.: Angiographic methods to assess human coronary angiogenesis. Am Heart J. 1999, 137 (1): 169-179. 10.1016/S0002-8703(99)70473-4
CAS
PubMed
Google Scholar
Wang BW, Chang H, Lin S, Kuan P, Shyu KG: Induction of matrix metalloproteinases-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res. 2003, 59 (2): 460-469. 10.1016/S0008-6363(03)00428-0
CAS
PubMed
Google Scholar
Harms BD, Bassi GM, Horwitz AR, Lauffenburger DA: Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys J. 2005, 88 (2): 1479-1488. 10.1529/biophysj.104.047365
PubMed Central
CAS
PubMed
Google Scholar
Rupp PA, Czirok A, Little CD: alphavbeta3 integrin-dependent endothelial cell dynamics in vivo. Development. 2004, 131 (12): 2887-2897. 10.1242/dev.01160
CAS
PubMed
Google Scholar
Young WC, Herman IM: Extracellular matrix modulation of endothelial cell shape and motility following injury in vitro. J Cell Sci. 1985, 73: 19-32.
CAS
PubMed
Google Scholar
Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J: Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development. 2007, 134 (5): 839-844. 10.1242/dev.003244
CAS
PubMed
Google Scholar
Williams CK, Li JL, Murga M, Harris AL, Tosato G: Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function. Blood. 2006, 107 (3): 931-939. 10.1182/blood-2005-03-1000
PubMed Central
CAS
PubMed
Google Scholar
Shreiber DI, Barocas VH, Tranquillo RT: Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophys J. 2003, 84 (6): 4102-4114. 10.1016/S0006-3495(03)75135-2
PubMed Central
CAS
PubMed
Google Scholar
Pankov R, Endo Y, Even-Ram S, Araki M, Clark K, Cukierman E, Matsumoto K, Yamada KM: A Rac switch regulates random versus directionally persistent cell migration. J Cell Biol. 2005, 170 (5): 793-802. 10.1083/jcb.200503152
PubMed Central
CAS
PubMed
Google Scholar
Kouvroukoglou S, Dee KC, Bizios R, McIntire LV, Zygourakis K: Endothelial cell migration on surfaces modified with immobilized adhesive peptides. Biomaterials. 2000, 21 (17): 1725-1733. 10.1016/S0142-9612(99)00205-7
CAS
PubMed
Google Scholar
Lee Y, Markenscoff PA, McIntire LV, Zygourakis K: Characterization of endothelial cell locomotion using a Markov chain model. Biochem Cell Biol. 1995, 73 (7–8): 461-472.
CAS
PubMed
Google Scholar
Gamble JR, Matthias LJ, Meyer G, Kaur P, Russ G, Faull R, Berndt MC, Vadas MA: Regulation of in vitro capillary tube formation by anti-integrin antibodies. J Cell Biol. 1993, 121 (4): 931-943. 10.1083/jcb.121.4.931
CAS
PubMed
Google Scholar