Boehncke WH, et al.: Pulling the trigger on psoriasis. Nature. 1996, 379 (6568): 777. 10.1038/379777a0
Article
CAS
PubMed
Google Scholar
Ortonne JP: Aetiology and pathogenesis of psoriasis. Br J Dermatol. 1996, 135 (Suppl 49): 1-5. 10.1111/j.1365-2133.1996.tb15660.x
Article
PubMed
Google Scholar
Pastore S, et al.: Biological drugs targeting the immune response in the therapy of psoriasis. Biologics. 2008, 2 (4): 687-97.
PubMed Central
CAS
PubMed
Google Scholar
Gisondi P, Girolomoni G: Biologic therapies in psoriasis: a new therapeutic approach. Autoimmun Rev. 2007, 6 (8): 515-9. 10.1016/j.autrev.2006.12.002
Article
CAS
PubMed
Google Scholar
Oestreicher JL, et al.: Molecular classification of psoriasis disease-associated genes through pharmacogenomic expression profiling. Pharmacogenomics J. 2001, 1 (4): 272-87.
Article
CAS
PubMed
Google Scholar
Bowcock AM, et al.: Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet. 2001, 10 (17): 1793-805. 10.1093/hmg/10.17.1793
Article
CAS
PubMed
Google Scholar
Zhou X, et al.: Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63, 100-element oligonucleotide array. Physiol Genomics. 2003, 13 (1): 69-78.
Article
CAS
PubMed
Google Scholar
Quekenborn-Trinquet V, et al.: Gene expression profiles in psoriasis: analysis of impact of body site location and clinical severity. Br J Dermatol. 2005, 152 (3): 489-504. 10.1111/j.1365-2133.2005.06384.x
Article
CAS
PubMed
Google Scholar
Nikolskaya T, et al.: Network analysis of human glaucomatous optic nerve head astrocytes. BMC Med Genomics. 2009, 2: 24. 10.1186/1755-8794-2-24
Article
PubMed Central
PubMed
Google Scholar
Nikolsky Y, Nikolskaya T, Bugrim A: Biological networks and analysis of experimental data in drug discovery. DrugDiscov Today. 2005, 10 (9): 653-62. 10.1016/S1359-6446(05)03420-3.
Article
CAS
Google Scholar
Bhavnani SK, et al.: Network analysis of genes regulated in renal diseases: implications for a molecular-based classification. BMC Bioinformatics. 2009, 10 (Suppl 9): S3. 10.1186/1471-2105-10-S9-S3
Article
PubMed Central
PubMed
Google Scholar
Ideker T, Sharan R: Protein networks in disease. Genome Res. 2008, 18 (4): 644-52. 10.1101/gr.071852.107
Article
PubMed Central
CAS
PubMed
Google Scholar
Chuang HY, et al.: Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007, 3: 140. 10.1038/msb4100180
Article
PubMed Central
PubMed
Google Scholar
Cox B, Kislinger T, Emili A: Integrating gene and protein expression data: pattern analysis and profile mining. Methods. 2005, 35 (3): 303-14. 10.1016/j.ymeth.2004.08.021
Article
CAS
PubMed
Google Scholar
Wise LH, Lanchbury JS, Lewis CM: Meta-analysis of genome searches. Ann Hum Genet. 1999, 63 (Pt 3): 263-72. 10.1046/j.1469-1809.1999.6330263.x
Article
CAS
PubMed
Google Scholar
Ghosh D, et al.: Statistical issues and methods for meta-analysis of microarray data: a case study in prostate cancer. Funct Integr Genomics. 2003, 3 (4): 180-8. 10.1007/s10142-003-0087-5
Article
CAS
PubMed
Google Scholar
Warnat P, Eils R, Brors B: Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics. 2005, 6: 265. 10.1186/1471-2105-6-265
Article
PubMed Central
PubMed
Google Scholar
Hack CJ: Integrated transcriptome and proteome data: the challenges ahead. Brief Funct Genomic Proteomic. 2004, 3 (3): 212-9. 10.1093/bfgp/3.3.212
Article
CAS
PubMed
Google Scholar
Menezes R, et al.: Integrated analysis of DNA copy number and gene expression microarray data using gene sets. BMC Bioinformatics. 2009, 10 (1): 203. 10.1186/1471-2105-10-203
Article
PubMed Central
PubMed
Google Scholar
Gravel P, Golaz O: Two-Dimensional PAGE Using Carrier Ampholyte pH Gradients in the First Dimension. The Protein Protocols Handbook. 1996, 127-132. full_text.
Chapter
Google Scholar
Mortz E, et al.: Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics. 2001, 1 (11): 1359-63. 10.1002/1615-9861(200111)1:11<1359::AID-PROT1359>3.0.CO;2-Q
Article
CAS
PubMed
Google Scholar
Yao Y, et al.: Type I interferon: potential therapeutic target for psoriasis?. PLoS One. 2008, 3 (7): e2737. 10.1371/journal.pone.0002737
Article
PubMed Central
PubMed
Google Scholar
Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B, Methodological. 1995, 57 (1): 289-300.
Google Scholar
Dezso Z, et al.: Identifying disease-specific genes based on their topological significance in protein networks. BMC Syst Biol. 2009, 3: 36. 10.1186/1752-0509-3-36
Article
PubMed Central
PubMed
Google Scholar
Pihur V, Datta S: RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics. 2009, 10: 62. 10.1186/1471-2105-10-62
Article
PubMed Central
PubMed
Google Scholar
Leigh IM, et al.: Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. The British journal of dermatology. 1995, 133 (4): 501-511. 10.1111/j.1365-2133.1995.tb02696.x
Article
CAS
PubMed
Google Scholar
Madsen P, et al.: Molecular cloning, occurrence, and expression of a novel partially secreted protein "psoriasin" that is highly up-regulated in psoriatic skin. The Journal of investigative dermatology. 1991, 97 (4): 701-712. 10.1111/1523-1747.ep12484041
Article
CAS
PubMed
Google Scholar
Vorum H, et al.: Expression and divalent cation binding properties of the novel chemotactic inflammatory protein psoriasin. Electrophoresis. 1996, 17 (11): 1787-96. 10.1002/elps.1150171118
Article
CAS
PubMed
Google Scholar
Takeda A, et al.: Overexpression of serpin squamous cell carcinoma antigens in psoriatic skin. J Invest Dermatol. 2002, 118 (1): 147-54. 10.1046/j.0022-202x.2001.01610.x
Article
CAS
PubMed
Google Scholar
Nikolsky Y, et al.: Functional analysis of OMICs data and small molecule compounds in an integrated "knowledge-based" platform. Methods in molecular biology (Clifton, N.J.). 2009, 563: 177-196. full_text
Article
CAS
Google Scholar
Ghavami S, et al.: S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. Journal of leukocyte biology. 2008, 83 (6): 1484-1492. 10.1189/jlb.0607397
Article
PubMed Central
CAS
PubMed
Google Scholar
Schreiber J, et al.: Coordinated binding of NF-kappaB family members in the response of human cells to lipopolysaccharide. Proc Natl Acad Sci USA. 2006, 103 (15): 5899-904. 10.1073/pnas.0510996103
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsuruta D: NF-kappaB links keratinocytes and lymphocytes in the pathogenesis of psoriasis. Recent Pat Inflamm Allergy Drug Discov. 2009, 3 (1): 40-8. 10.2174/187221309787158399
Article
CAS
PubMed
Google Scholar
Sano S, Chan KS, DiGiovanni J: Impact of Stat3 activation upon skin biology: a dichotomy of its role between homeostasis and diseases. J Dermatol Sci. 2008, 50 (1): 1-14. 10.1016/j.jdermsci.2007.05.016
Article
CAS
PubMed
Google Scholar
Ghoreschi K, Mrowietz U, Rocken M: A molecule solves psoriasis? Systemic therapies for psoriasis inducing interleukin 4 and Th2 responses. J Mol Med. 2003, 81 (8): 471-80. 10.1007/s00109-003-0460-9
Article
CAS
PubMed
Google Scholar
Piruzian ES, et al.: [The comparative analysis of psoriasis and Crohn disease molecular-genetical processes under pathological conditions]. Mol Biol (Mosk). 2009, 43 (1): 175-9.
Article
CAS
Google Scholar
Gandarillas A, Watt FM: c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 1997, 11 (21): 2869-82. 10.1101/gad.11.21.2869
Article
PubMed Central
CAS
PubMed
Google Scholar
Arnold I, Watt FM: c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol. 2001, 11 (8): 558-68. 10.1016/S0960-9822(01)00154-3
Article
CAS
PubMed
Google Scholar
Lohwasser C, et al.: The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha. J Invest Dermatol. 2006, 126 (2): 291-9. 10.1038/sj.jid.5700070
Article
CAS
PubMed
Google Scholar
Santilli F, et al.: Soluble forms of RAGE in human diseases: clinical and therapeutical implications. Curr Med Chem. 2009, 16 (8): 940-52. 10.2174/092986709787581888
Article
CAS
PubMed
Google Scholar
Nikolsky Y, et al.: Genome-wide functional synergy between amplified and mutated genes in human breast cancer. Cancer research. 2008, 68 (22): 9532-9540. 10.1158/0008-5472.CAN-08-3082
Article
CAS
PubMed
Google Scholar
Nikolskaya T, et al.: Network analysis of human glaucomatous optic nerve head astrocytes. BMC medical genomics. 2009, 2 (1): 24. 10.1186/1755-8794-2-24
Article
PubMed Central
PubMed
Google Scholar
Le Naour F, et al.: Profiling changes in gene expression during differentiation and maturation of monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. J Biol Chem. 2001, 276 (21): 17920-31. 10.1074/jbc.M100156200
Article
CAS
PubMed
Google Scholar
Steiling K, et al.: Comparison of proteomic and transcriptomic profiles in the bronchial airway epithelium of current and never smokers. PLoS One. 2009, 4 (4): e5043. 10.1371/journal.pone.0005043
Article
PubMed Central
PubMed
Google Scholar
Conway JP, Kinter M: Proteomic and transcriptomic analyses of macrophages with an increased resistance to oxidized low density lipoprotein (oxLDL)-induced cytotoxicity generated by chronic exposure to oxLDL. Mol Cell Proteomics. 2005, 4 (10): 1522-40. 10.1074/mcp.M500111-MCP200
Article
CAS
PubMed
Google Scholar
Di Pietro C, et al.: The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma. BMC Med Genomics. 2009, 2 (1): 20. 10.1186/1755-8794-2-20
Article
PubMed Central
PubMed
Google Scholar
Mijalski T, et al.: Identification of coexpressed gene clusters in a comparative analysis of transcriptome and proteome in mouse tissues. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102 (24): 8621-8626. 10.1073/pnas.0407672102
Article
PubMed Central
CAS
PubMed
Google Scholar
Habermann JK, et al.: Stage-specific alterations of the genome, transcriptome, and proteome during colorectal carcinogenesis. Genes Chromosomes Cancer. 2007, 46 (1): 10-26. 10.1002/gcc.20382
Article
CAS
PubMed
Google Scholar
Chen YR, et al.: Quantitative proteomic and genomic profiling reveals metastasis-related protein expression patterns in gastric cancer cells. J Proteome Res. 2006, 5 (10): 2727-42. 10.1021/pr060212g
Article
CAS
PubMed
Google Scholar
Shachaf CM, et al.: Genomic and proteomic analysis reveals a threshold level of MYC required for tumor maintenance. Cancer Res. 2008, 68 (13): 5132-42. 10.1158/0008-5472.CAN-07-6192
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao C, et al.: Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods. Journal of Proteome Research. 2009, 8 (8): 4028-4038. 10.1021/pr900364p
Article
CAS
PubMed
Google Scholar
Gerling IC, et al.: New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes. Mol Cell Proteomics. 2006, 5 (2): 293-305.
Article
CAS
PubMed
Google Scholar
Zheng PZ, et al.: Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA. 2005, 102 (21): 7653-8. 10.1073/pnas.0502825102
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao C, et al.: Identification of Novel Functional Differences in Monocyte Subsets Using Proteomic and Transcriptomic Methods. J Proteome Res. 2009,
Google Scholar
Reichrath J, et al.: Expression of integrin subunits and CD44 isoforms in psoriatic skin and effects of topical calcitriol application. J Cutan Pathol. 1997, 24 (8): 499-506. 10.1111/j.1600-0560.1997.tb01324.x
Article
CAS
PubMed
Google Scholar
Kelly R, Marsden RA, Bevan D: Exacerbation of psoriasis with GM-CSF therapy. Br J Dermatol. 1993, 128 (4): 468-9. 10.1111/j.1365-2133.1993.tb00218.x
Article
CAS
PubMed
Google Scholar
Gu J, et al.: A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients. Rheumatology (Oxford). 2002, 41 (7): 759-66. 10.1093/rheumatology/41.7.759
Article
CAS
Google Scholar
Reischl J, et al.: Increased expression of Wnt5a in psoriatic plaques. J Invest Dermatol. 2007, 127 (1): 163-9. 10.1038/sj.jid.5700488
Article
CAS
PubMed
Google Scholar
Shiina T, et al.: The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009, 54 (1): 15-39. 10.1038/jhg.2008.5
Article
CAS
PubMed
Google Scholar
Asadullah K, et al.: IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J Clin Invest. 1998, 101 (4): 783-94. 10.1172/JCI1476
Article
PubMed Central
CAS
PubMed
Google Scholar
Cancino-Diaz JC, et al.: Interleukin-13 receptor in psoriatic keratinocytes: overexpression of the mRNA and underexpression of the protein. J Invest Dermatol. 2002, 119 (5): 1114-20. 10.1046/j.1523-1747.2002.19509.x
Article
CAS
PubMed
Google Scholar
Pietrzak A, et al.: Genes and structure of selected cytokines involved in pathogenesis of psoriasis. Folia Histochem Cytobiol. 2008, 46 (1): 11-21. 10.2478/v10042-008-0002-y
CAS
PubMed
Google Scholar
Martin R: Interleukin 4 treatment of psoriasis: are pleiotropic cytokines suitable therapies for autoimmune diseases?. Trends Pharmacol Sci. 2003, 24 (12): 613-6. 10.1016/j.tips.2003.10.006
Article
CAS
PubMed
Google Scholar
Penna G, et al.: Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1, 25-dihydroxyvitamin D3. Blood. 2005, 106 (10): 3490-7. 10.1182/blood-2005-05-2044
Article
CAS
PubMed
Google Scholar
Fu X, et al.: Estimating accuracy of RNA-Seq and microarrays with proteomics. BMC Genomics. 2009, 10 (1): 161. 10.1186/1471-2164-10-161
Article
PubMed Central
PubMed
Google Scholar
Foell D, et al.: Expression of the pro-inflammatory protein S100A12 (EN-RAGE) in rheumatoid and psoriatic arthritis. Rheumatology (Oxford). 2003, 42 (11): 1383-9. 10.1093/rheumatology/keg385
Article
CAS
Google Scholar
Horuk R: BX471: a CCR1 antagonist with anti-inflammatory activity in man. Mini Rev Med Chem. 2005, 5 (9): 791-804. 10.2174/1389557054867057
Article
CAS
PubMed
Google Scholar
Vestergaard C, et al.: Expression of CCR2 on monocytes and macrophages in chronically inflamed skin in atopic dermatitis and psoriasis. Acta Derm Venereol. 2004, 84 (5): 353-8. 10.1080/00015550410034444
Article
CAS
PubMed
Google Scholar
Rottman JB, et al.: Potential role of the chemokine receptors CXCR3, CCR4, and the integrin alphaEbeta7 in the pathogenesis of psoriasis vulgaris. Lab Invest. 2001, 81 (3): 335-47.
Article
CAS
PubMed
Google Scholar
de Groot M, et al.: Expression of the chemokine receptor CCR5 in psoriasis and results of a randomized placebo controlled trial with a CCR5 inhibitor. Arch Dermatol Res. 2007, 299 (7): 305-13. 10.1007/s00403-007-0764-7
Article
PubMed Central
CAS
PubMed
Google Scholar
Ellis CN, Krueger GG: Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N Engl J Med. 2001, 345 (4): 248-55. 10.1056/NEJM200107263450403
Article
CAS
PubMed
Google Scholar
De Rie MA, et al.: Expression of the T-cell activation antigens CD27 and CD28 in normal and psoriatic skin. Clin Exp Dermatol. 1996, 21 (2): 104-11. 10.1111/j.1365-2230.1996.tb00030.x
Article
CAS
PubMed
Google Scholar
Prens E, et al.: Adhesion molecules and IL-1 costimulate T lymphocytes in the autologous MECLR in psoriasis. Arch Dermatol Res. 1996, 288 (2): 68-73. 10.1007/BF02505046
Article
CAS
PubMed
Google Scholar
Haider AS, et al.: Novel insight into the agonistic mechanism of alefacept in vivo: differentially expressed genes may serve as biomarkers of response in psoriasis patients. J Immunol. 2007, 178 (11): 7442-9.
Article
CAS
PubMed
Google Scholar
Castelijns FA, et al.: The epidermal phenotype during initiation of the psoriatic lesion in the symptomless margin of relapsing psoriasis. J Am Acad Dermatol. 1999, 40 (6 Pt 1): 901-9. 10.1016/S0190-9622(99)70077-0
Article
CAS
PubMed
Google Scholar
Johansen C, et al.: Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol. 2009, 160 (2): 319-24. 10.1111/j.1365-2133.2008.08902.x
Article
CAS
PubMed
Google Scholar
Debets R, et al.: The IL-1 system in psoriatic skin: IL-1 antagonist sphere of influence in lesional psoriatic epidermis. J Immunol. 1997, 158 (6): 2955-63.
CAS
PubMed
Google Scholar
Schulz BS, et al.: Increased expression of epidermal IL-8 receptor in psoriasis. Down-regulation by FK-506 in vitro. J Immunol. 1993, 151 (8): 4399-406.
CAS
PubMed
Google Scholar
Guttman-Yassky E, et al.: Blockade of CD11a by efalizumab in psoriasis patients induces a unique state of T-cell hyporesponsiveness. J Invest Dermatol. 2008, 128 (5): 1182-91. 10.1038/jid.2008.4
Article
CAS
PubMed
Google Scholar
Sjogren F, et al.: Expression and function of beta 2 integrin CD11B/CD18 on leukocytes from patients with psoriasis. Acta Derm Venereol. 1999, 79 (2): 105-10. 10.1080/000155599750011291
Article
CAS
PubMed
Google Scholar
Curry JL, et al.: Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med. 2003, 127 (2): 178-86.
CAS
PubMed
Google Scholar
Vissers WH, et al.: Memory effector (CD45RO+) and cytotoxic (CD8+) T cells appear early in the margin zone of spreading psoriatic lesions in contrast to cells expressing natural killer receptors, which appear late. Br J Dermatol. 2004, 150 (5): 852-9. 10.1111/j.1365-2133.2004.05863.x
Article
CAS
PubMed
Google Scholar
Patterson AM, et al.: Differential expression of syndecans and glypicans in chronically inflamed synovium. Ann Rheum Dis. 2008, 67 (5): 592-601. 10.1136/ard.2006.063875
Article
PubMed Central
CAS
PubMed
Google Scholar
Wakita H, Takigawa M: E-selectin and vascular cell adhesion molecule-1 are critical for initial trafficking of helper-inducer/memory T cells in psoriatic plaques. Arch Dermatol. 1994, 130 (4): 457-63. 10.1001/archderm.130.4.457
Article
CAS
PubMed
Google Scholar
Chu A, et al.: Tissue specificity of E- and P-selectin ligands in Th1-mediated chronic inflammation. J Immunol. 1999, 163 (9): 5086-93.
CAS
PubMed
Google Scholar
Seung NR, et al.: Comparison of expression of heat-shock protein 60, Toll-like receptors 2 and 4, and T-cell receptor gammadelta in plaque and guttate psoriasis. J Cutan Pathol. 2007, 34 (12): 903-11. 10.1111/j.1600-0560.2007.00756.x
Article
PubMed
Google Scholar