Barabási AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nature Reviews Genetics. 2004, 5: 101-113. 10.1038/nrg1272
Article
PubMed
Google Scholar
Törönen P, Kolehmainen M, Wong G, Castrén E: Analysis of gene expression data using self-organizing maps. FEBS Lett. 1999, 451 (2): 142-146. 10.1016/S0014-5793(99)00524-4
Article
PubMed
Google Scholar
Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg D, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M: A map of the interactome network of the metazoan C. elegans. Science. 2003, 303: 540-543.
Article
Google Scholar
Yu H, Braun P, Yildirim M, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, N S, Fan C, de Smet AS, Motyl A, Hudson ME, Park J, Xin X, Cusick M, Moore T, Boone C, Snyder M, Roth FP, L BA, Tavernier J, Hill DE, Vidal M: High-quality binary protein interaction map of the yeast interactome network. Science. 2008, 322 (5898): 104-110. 10.1126/science.1158684
Article
PubMed Central
CAS
PubMed
Google Scholar
Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL: The large-scale organization of metabolic networks. Nature. 2000, 407: 651-654. 10.1038/35036627
Article
CAS
PubMed
Google Scholar
Mani KM, Lefebvre C, Wang K, Lim WK, Basso K, Dalla-Favera R, Califano A: A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol. 2008, 4 (169):
Hernández P, Huerta-Cepas J, Montaner D, Al-Shahrour F, Valls J, Gómez L, Capellá G, Dopazo J, Pujana MA: Evidence for systems-level molecular mechanisms of tumorigenesis. BMC Genomics. 2007, 20 (185):
Rhodes DR, Chinnaiyan AM: Integrative analysis of the cancer transcriptome. Nat Genet. 2005, 37 (Suppl): S31-37.
Article
CAS
PubMed
Google Scholar
Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, L BA, Vidal M, Zoghbi HY: A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 2006, 125 (4): 645-647. 10.1016/j.cell.2006.05.007
Article
Google Scholar
Duncan SA, Navas MA, Dufort D, Rossant J, Stoffel M: Regulation of a transcription factor network required for differentiation and metabolism. Science. 1998, 281 (5377): 692-695.
Article
CAS
PubMed
Google Scholar
Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S, Champy MF, Zhang B, Emilsson V, Doss S, Ghazalpour A, Horvath S, Drake TA, Lusis AJ, Schadt EE: Variations in DNA elucidate molecular networks that cause disease. Nature. 2008, 452 (7186): 429-435. 10.1038/nature06757
Article
PubMed Central
CAS
PubMed
Google Scholar
Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ, Horvath S: Integrating genetic and network analysis to characterize genes related to mouse weight. PLos Genet. 2006, 2 (8): e130.-
Article
PubMed Central
PubMed
Google Scholar
de la Fuente A: From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases. Trends in Genetics. 2010, 26 (7): 326-333. 10.1016/j.tig.2010.05.001
Article
CAS
PubMed
Google Scholar
Brun M, Kim S, Choi W, Dougherty ER: Comparison of gene regulatory networks via steady-state trajectories. EURASIP Journal on Bioinformatics and Systems Biology. 2007, 2007 (82702):
Chor B, Tuller T: Biological networks: comparison, conservation, and evolution via relative description length. J Comp Biol. 2007, 14 (6): 817-838. 10.1089/cmb.2007.R018.
Article
CAS
Google Scholar
Narayanan M, Karp RM: Comparing protein interaction networks via a graph match-and-split algorithm. J Comp Biol. 2007, 14 (7): 892-907. 10.1089/cmb.2007.0025.
Article
CAS
Google Scholar
Ihmels J, Bergmann S, Berman J, Barkai N: Comparative gene expression analysis by differential clustering approach: application to the Candida albicans transcription program. PLos Genet. 2005, 1 (3): e39.-
Article
PubMed Central
PubMed
Google Scholar
Choi J, Yu U, Yoo OJ, Kim S: Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics. 2005, 21 (24): 4348-4355. 10.1093/bioinformatics/bti722
Article
CAS
PubMed
Google Scholar
Southworth LK, Owen AB, Kim SK: Aging Mice Show a Decreasing Correlation of Gene Expression within Genetic Modules. PLos Genet. 2009, 5 (12): e1000776.-
Article
PubMed Central
PubMed
Google Scholar
Kishino H, Waddell P: Correspondence analysis of genes and tissue types and finding genetic links from microarray data. Genome Informatics. 2000, 11: 83-95.
CAS
PubMed
Google Scholar
Toh H, Horimoto K: System for Automatically Inferring a Genetic Netwerk from Expression Profiles. J Biol Phys. 2002, 28 (3): 449-464. 10.1023/A:1020337311471.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu X, Ye Y, Subramanian KR: Interactive Analysis of Gene Interactions Using Graphical Gaussian Model. Proceedings of the ACM SIGKDD Workshop on Data Mining in Bioinformatics. 2003, 3: 63-69.
Google Scholar
Dobra A, Hans C, Jones B, Nevins JR, Yao G, West M: Sparse graphical models for exploring gene expression data. J Multiv Anal. 2004, 90: 196-212. 10.1016/j.jmva.2004.02.009.
Article
Google Scholar
Schäfer J, Strimmer K: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics. 2005, 21 (6): 754-764. 10.1093/bioinformatics/bti062
Article
PubMed
Google Scholar
Chu J, Weiss ST, Carey VJ, Raby BA: A graphical model approach for inferring large-scale networks integrating gene expression and genetic polymorphism. BMC Systems Biology. 2009, 3 (55):
Schäfer J, Strimmer K: A shrinking approach to large-scale covariance matrix estimation and implications for functional genomics. Statist Appl Genet Mol Biol. 2007, 4 (32):
Reverter A, Ingham A, Lehnert SA, Tan SH, Wang Y, Ratnakumar A, Dalrymple BP: Simultaneous identification of differential gene expression and connectivity in inflammation, adipogenesis and cancer. Bioinformatics. 2006, 22 (19): 2396-2404. 10.1093/bioinformatics/btl392
Article
CAS
PubMed
Google Scholar
Sotiriou C, Neo S, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Nat Aca Sci. 2003, 100 (18): 10393-10398. 10.1073/pnas.1732912100.
Article
CAS
Google Scholar
Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM, Gillet C, Ellis P, Ryder K, Reid JF, Daidone MG, Pierotti MA, Berns EM, Jansen MP, Foekens JA, Delorenzi M, Bontempi G, Piccart MJ, Sotiriou C: Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics. 2008, 9 (239):
Gentleman R, Carey V, Huber W, Hahne F: Using the genefilter function to filter genes from a microarray dataset. 2011, http://www.bioconductor.org/packages/2.8/bioc/html/genefilter.html
Google Scholar
Bourgon R, Gentleman R, Huber W: Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci. 2010, 107 (21): 9546-9551. 10.1073/pnas.0914005107
Article
PubMed Central
CAS
PubMed
Google Scholar
Song J, Shih IM, Chan D, Zhang Z: Suppression of annexin A11 in ovarian cancer: implications in chemoresistance. Neoplasia. 2009, 11 (6): 605-614.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology. 2004, 3: 3-
Article
Google Scholar
Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, de Vijver MJV, Bergh J, Piccart M, Delorenzi M: Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006, 98 (4): 262-272. 10.1093/jnci/djj052
Article
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat Aca Sci. 2005, 102 (43): 15545-15550. 10.1073/pnas.0506580102.
Article
CAS
Google Scholar
Borg A, Zhang QX, Olsson H, Wenngren E: Chromosome 1 alterations in breast cancer: allelic loss on 1p and 1q is related to lymphogenic metastases and poor prognosis. Genes Chromosomes Cancer. 1992, 5 (4): 311-320. 10.1002/gcc.2870050406
Article
CAS
PubMed
Google Scholar
Suchanek KM, May FJ, Robinson JA, Lee WJ, Holman NA, Monteith GR, Roberts-Thomson SJ: Peroxisome proliferator-activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2002, 34 (4): 165-171. 10.1002/mc.10061
Article
CAS
PubMed
Google Scholar
Bocca C, Bozzo F, Martinasso G, Canuto RA, Miglietta A: Involvement of PPARalpha in the growth inhibitory effect of arachidonic acid on breast cancer cells. Br J Nutr. 2008, 100 (4): 739-750.
Article
CAS
PubMed
Google Scholar
Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP: Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res. 1996, 56 (12): 2745-2747.
CAS
PubMed
Google Scholar
Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995, 1: 27-31. 10.1038/nm0195-27
Article
CAS
PubMed
Google Scholar
Abe M, Sato Y: cDNA microarray analysis of the gene expression profile of VEGF-activated human umbilical vein endothelial cells. Angiogenesis. 2001, 4 (4): 289-298. 10.1023/A:1016018617152
Article
CAS
PubMed
Google Scholar
Baron V, Adamson ED, Calogero A, Ragona G, Mercola D: The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther. 2006, 13 (2): 115-124. 10.1038/sj.cgt.7700896
Article
PubMed Central
CAS
PubMed
Google Scholar
Dillon RL, Brown ST, Ling C, Shioda T, Muller WJ: An EGR2/CITED1 transcription factor complex and the 14-3-3sigma tumor suppressor are involved in regulating ErbB2 expression in a transgenic-mouse model of human breast cancer. Mol Cell Biol. 2007, 27 (24): 8648-8657. 10.1128/MCB.00866-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Fahmy R, Dass CR, Sun LQ, Chesterman CN, Khachigian LM: Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med. 2003, 9 (8): 1026-1032. 10.1038/nm905
Article
CAS
PubMed
Google Scholar
Unoki M, Nakamura Y: Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene. 2001, 20 (33): 4457-4465. 10.1038/sj.onc.1204608
Article
CAS
PubMed
Google Scholar
Schmidt M, Böhm D, von Törne C, Steiner E, Puhl A, Pilch H, Lehr HA, Hengstler JG, Kölbl H, Gehrmann M: The Humoral Immune System Has a Key Prognostic Impact in Node-Negative Breast Cancer. Cancer Res. 2008, 68 (13): 5405-5413. 10.1158/0008-5472.CAN-07-5206
Article
CAS
PubMed
Google Scholar
Watson M: CoXpress: differential co-expression in gene expression data. BMC Bioinformatics. 2006, 7 (509):
Choi Y, Kendziorski C: Statistical methods for gene set co-expression analysis. Bioinformatics. 2009, 25 (21): 2780-2786. 10.1093/bioinformatics/btp502
Article
PubMed Central
CAS
PubMed
Google Scholar
Reverter A, Chan EKF: Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics. 2008, 24 (21): 2491-2497. 10.1093/bioinformatics/btn482
Article
CAS
PubMed
Google Scholar
Margheri F, Serratì S, Lapucci A, Anastasia C, Giusti B, Pucci M, Torre E, Bianchini F, Calorini L, Albini A, Ventura A, Fibbi G, Del Rosso M: Systemic sclerosis-endothelial cell antiangiogenic pentraxin 3 and matrix metalloprotease 12 control human breast cancer tumor vascularization and development in mice. Neoplasia. 2009, 11 (10): 1106-1115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kennedy RD, Gorski JJ, Quinn JE, Stewart GE, James CR, Moore S, Mulligan K, Emberley ED, Lioe TF, Morrison PJ, Mullan PB, Reid G, Johnston PG, Watson PH, Harkin DP: BRCA1 and c-Myc Associate to Transcriptionally Repress Psoriasin, a DNA Damage-Inducible Gene. Cancer Res. 2005, 65 (22): 10265-10272. 10.1158/0008-5472.CAN-05-1841
Article
CAS
PubMed
Google Scholar
Moon A, Yong HY, Song JI, Cukovic D, Salagrama S, Kaplan D, Putt D, Kim H, Dombkowski A, Kim HR: Global gene expression profiling unveils S100A8/A9 as candidate markers in H-ras-mediated human breast epithelial cell invasion. Mol cancer Res. 2008, 6 (10): 1544-1553. 10.1158/1541-7786.MCR-08-0189
Article
CAS
PubMed
Google Scholar
Rhee DK, Park SH, Jang YK: Molecular signatures associated with transformation and progression to breast cancer in the isogenic MCF10 model. Genomics. 2008, 92 (6): 419-428. 10.1016/j.ygeno.2008.08.005
Article
CAS
PubMed
Google Scholar
Rhodes DR, Ateeq B, Cao Q, Tomlins SA, Mehra R, Laxman B, Kalyana-Sundaram S, Lonigro RJ, Helgeson BE, Bhojani MS, Rehemtulla A, Kleer CG, Hayes DF, Lucas PC, Varambally S, Chinnaiyan AM: AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc Nat Aca Sci. 2009, 106 (25): 10284-10289. 10.1073/pnas.0900351106.
Article
CAS
Google Scholar
Monge M, Colas E, Doll A, Gil-Moreno A, Castellvi J, Diaz B, Gonzalez M, Lopez-Lopez R, Xercavins J, Carreras R, Alameda F, Canals F, Gabrielli F, Reventos J, Abal M: Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress. Carcinogenesis. 2009, 30 (8): 1288-1297. 10.1093/carcin/bgp119
Article
CAS
PubMed
Google Scholar
Panse J, Friedrichs K, Marx A, Hildebrandt Y, Luetkens T, Barrels K, Horn C, Stahl T, Cao Y, Milde-Langosch K, Niendorf A, Kröger N, Wenzel S, Leuwer R, Bokemeyer C, Hegewisch-Becker S, Atanackovic D: Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients. Br J Cancer. 2008, 99 (6): 930-938. 10.1038/sj.bjc.6604621
Article
PubMed Central
CAS
PubMed
Google Scholar
Folgueira MA, Brentani H, Katayama ML, Patrão DF, Carraro DM, Mourão Netto M, Barbosa EM, Caldeira JR, Abreu AP, Lyra EC, Kaiano JH, Mota LD, Campos AH, Maciel MS, Dellamano M, Caballero OL, Brentani MM: Gene expression profiling of clinical stages II and III breast cancer. Braz J Med Biol Res. 2006, 39 (8): 1101-1113. 10.1590/S0100-879X2006000800013
Article
CAS
PubMed
Google Scholar
Cimino D, Fuso L, Sfiligoi C, Biglia N, Ponzone R, Maggiorotto F, Russo G, Cicatiello L, Weisz A, Taverna D, Sismondi P, De Bortoli M: Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer. 2008, 123 (6): 1327-1338. 10.1002/ijc.23660
Article
CAS
PubMed
Google Scholar
Watson MA, Fleming TP: Isolation of differentially expressed sequence tags from human breast cancer. Cancer Res. 1994, 54 (17): 4598-4602.
CAS
PubMed
Google Scholar
Watson MA, Fleming TP: Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res. 1996, 56 (4): 860-865.
CAS
PubMed
Google Scholar
Maras M, Vanparys C, Muylle F, Robbens J, Berger U, Barber JL, Blust R, De Coen W: Estrogen-like properties of fluorotelomer alcohols as revealed by mcf-7 breast cancer cell proliferation. Environ Health Perspect. 2006, 114: 100-105. 10.1289/ehp.8149
Article
PubMed Central
CAS
PubMed
Google Scholar
Ghosh MG, Thompson DA, Weigel RJ: PDZK1 and GREB1 are estrogen-regulated genes expressed in hormone-responsive breast cancer. Cancer Res. 2003, 60 (22): 6367-6375.
Google Scholar
Mackay A, Urruticoechea A, Dixon JM, Dexter T, Fenwick K, Ashworth A, Drury S, Larionov A, Young O, White S, Miller WR, Evans DB, Dowsett M: Molecular response to aromatase inhibitor treatment in primary breast cancer. Breast Cancer Res. 2007, 9 (3): R37.-
Article
PubMed Central
PubMed
Google Scholar
Naderi AEA, Teschendorff , Beigel J, Cariati M, Ellis IO, Brenton JD, Caldas C: BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-kappaB inhibition of apoptosis in breast cancer cell lines. Cancer Res. 2007, 67 (14): 6725-6736. 10.1158/0008-5472.CAN-06-4394
Article
CAS
PubMed
Google Scholar
Arai K, Takano S, Teratani T, Ito Y, Yamada T, Nozawa R: S100A8 and S100A9 overexpression is associated with poor pathological parameters in invasive ductal carcinoma of the breast. Curr Cancer Drug Targets. 2008, 8 (4): 243-252. 10.2174/156800908784533445
Article
CAS
PubMed
Google Scholar
Nagaraja G, Othman M, Fox B, Alsaber R, Pellegrino C, Zeng Y, Khanna R, Tamburini P, Swaroop A, Kandpal R: Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene. 2006, 25 (16): 2328-2338. 10.1038/sj.onc.1209265
Article
CAS
PubMed
Google Scholar
Bleeker FE, Lamba S, Rodolfo M, Scarpa A, Leenstra S, Vandertop WP, Bardelli A: Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes. Hum Mutat. 2009, 30 (2): 451-459. 10.1002/humu.20927.
Article
Google Scholar