Richard P, Teusink B, Hemker MB, Van Dam K, Westerhoff HV: Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast. 1996, 12: 731-740. 10.1002/(SICI)1097-0061(19960630)12:8<731::AID-YEA961>3.0.CO;2-Z.
Article
CAS
Google Scholar
Andersen AZ, Poulsen AK, Brasen JC, Olsen LF: On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae. Yeast. 2007, 24: 731-739. 10.1002/yea.1508.
Article
CAS
Google Scholar
Ghosh A, Chance B: Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun. 1964, 16: 174-181. 10.1016/0006-291X(64)90357-2.
Article
CAS
Google Scholar
Chance B, Estabrook RW, Ghosh A: Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc Natl Acad Sci USA. 1964, 51: 1244-1251. 10.1073/pnas.51.6.1244.
Article
CAS
Google Scholar
Lushchak OV, Müller SC, Mair T: Comparison of glycolytic NADH oscillations in yeasts Saccharomyces cerevisiae and Saccharomyces carlsbergensis. Ukr Biokhim Zh. 2006, 78: 22-28.
CAS
Google Scholar
Tornheim K, Lowenstein JM: The purine nucleotide cycle. Control of phosphofructokinase and glycolytic oscillations in muscle extracts. J Biol Chem. 1975, 250: 6304-6314.
CAS
Google Scholar
Nilsson T, Schultz V, Berggren PO, Corkey BE, Tornheim K: Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. Biochem J. 1996, 314: 91-94.
Article
CAS
Google Scholar
Escalante R, Vicente JJ: Dictyostelium discoideum: a model system for differentiation and patterning. Int J Dev Biol. 2000, 44: 819-835.
CAS
Google Scholar
Vitaterna MH, Takahashi JS, Turek FW: Overview of circadian rhythms. Alcohol Res Health. 2001, 2001 (25): 85-93.
Google Scholar
Berridge MJ, Bootman MD, Lipp P: 1998 Calcium–a life and death signal. Nature. 1998, 395: 645-648. 10.1038/27094.
Article
CAS
Google Scholar
Tyson JJ, Novak B: Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol. 2001, 210: 249-263. 10.1006/jtbi.2001.2293.
Article
CAS
Google Scholar
Mair T, Warnke C, Tsuji K, Müller SC: Control of glycolytic oscillations by temperature. Biophys J. 2005, 88: 639-646. 10.1529/biophysj.104.043398.
Article
CAS
Google Scholar
De Monte S, D’ Ovidio F, Danø S, Sørensen PG: Dynamical quorum sensing: Population density encoded in cellular dynamics. Proc Natl Acad Sci USA. 2007, 104: 18377-18381. 10.1073/pnas.0706089104.
Article
CAS
Google Scholar
Olsen LF, Andersen AZ, Lunding A, Brasen JC, Poulsen AK: Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases. Biophys J. 2009, 96: 3850-3861. 10.1016/j.bpj.2009.02.026.
Article
CAS
Google Scholar
Richard P, Bakker BM, Teusink B, Van Dam K, Westerhoff HV: Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur J Biochem. 1996, 235: 238-241. 10.1111/j.1432-1033.1996.00238.x.
Article
CAS
Google Scholar
Bier M, Bakker BM, Westerhoff HV: How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment. Biophys J. 2000, 78: 1087-1093. 10.1016/S0006-3495(00)76667-7.
Article
CAS
Google Scholar
Poulsen AK, Petersen MØ, Olsen LF: Single cell studies and simulation of cell-cell interactions using oscillating glycolysis in yeast cells. Biophys Chem. 2007, 125: 275-280. 10.1016/j.bpc.2006.08.009.
Article
CAS
Google Scholar
Wolf J, Passarge J, Somsen OJ, Snoep JL, Heinrich R, Westerhoff HV: Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys J. 2000, 78: 1145-1153. 10.1016/S0006-3495(00)76672-0.
Article
CAS
Google Scholar
Goldbeter A, Lefever R: Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys J. 1972, 12: 1302-1315. 10.1016/S0006-3495(72)86164-2.
Article
CAS
Google Scholar
Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, et al., et al: Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem. 2000, 267: 5313-5329. 10.1046/j.1432-1327.2000.01527.x.
Article
CAS
Google Scholar
Reijenga KA, Snoep JL, Diderich JA, van Verseveld HW, Westerhoff HV, Teusink B: Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophys J. 2001, 80: 626-634. 10.1016/S0006-3495(01)76043-2.
Article
CAS
Google Scholar
Reijenga KA, van Megen Y, Kooi BW, Bakker BM, Snoep JL, van Verseveld HW, et al., et al: Yeast glycolytic oscillations that are not controlled by a single oscillophore: a new definition of oscillophore strength. J Theor Biol. 2005, 232: 385-398. 10.1016/j.jtbi.2004.08.019.
Article
CAS
Google Scholar
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998, 14: 115-132. 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.
Article
CAS
Google Scholar
Sherman F, Fink G, Hicks J: Methods in yeast genetics: A laboratory manual. 1986, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
Google Scholar
Poulsen AK, Lauritsen FR, Olsen LF: Sustained glycolytic oscillations–no need for cyanide. FEMS Microbiol Lett. 2004, 236: 261-266.
CAS
Google Scholar
Poulsen AK, Andersen AZ, Brasen JC, Scharff-Poulsen AM, Olsen LF: Probing glycolytic and membrane potential oscillations in Saccharomyces cerevisiae. Biochemistry. 2008, 47: 7477-7484. 10.1021/bi800396e.
Article
CAS
Google Scholar
Schmidt H, Jirstrand M: Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics. 2006, 22: 514-515. 10.1093/bioinformatics/bti799.
Article
CAS
Google Scholar
Stelling J, Gilles ED, Doyle FJ: Robustness properties of circadian clock architectures. Proc Natl Acad Sci USA. 2004, 101: 13210-13215. 10.1073/pnas.0401463101.
Article
CAS
Google Scholar
Higgins J: A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc Natl Acad Sci USA. 1964, 51: 989-994. 10.1073/pnas.51.6.989.
Article
CAS
Google Scholar
Madsen MF, Danø S, Sørensen PG: On the mechanisms of glycolytic oscillations in yeast. FEBS J. 2005, 272: 648-2660.
Article
Google Scholar
Heinisch J, Boles E, Timple C: A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. J Biol Chem. 1996, 171: 15928-15933.
Article
Google Scholar
McAlister L, Holland MJ: Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem. 1985, 260: 15019-15027.
CAS
Google Scholar
McAlister L, Holland MJ: Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem. 1985, 260: 15013-15018.
CAS
Google Scholar
Delgado ML, O’Connor JE, Azorín I, Renau-Piqueras J, Gil ML, Gozalbo D: The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins. Microbiol (Reading, Engl.). 2001, 147: 411-417.
Article
CAS
Google Scholar
Rodicio R, Heinisch J: Isolation of the yeast phosphoglyceromutase gene and construction of deletion mutants. Mol Gen Genet. 1987, 206: 133-140. 10.1007/BF00326548.
Article
CAS
Google Scholar
Heinisch JJ, Müller S, Schlüter E, Jacoby J, Rodicio R: Investigation of two yeast genes encoding putative isoenzymes of phosphoglycerate mutase. Yeast. 1998, 14: 203-213. 10.1002/(SICI)1097-0061(199802)14:3<203::AID-YEA205>3.0.CO;2-8.
Article
CAS
Google Scholar
Brewer JM, Glover CV, Holland MJ, Lebioda L: Effect of site-directed mutagenesis of His373 of yeast enolase on some of its physical and enzymatic properties. Biochim Biophys Acta. 1997, 1340: 88-96. 10.1016/S0167-4838(97)00029-0.
Article
CAS
Google Scholar
Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, et al., et al: Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002, 418: 387-391. 10.1038/nature00935.
Article
CAS
Google Scholar
Hynne F, Danø S, Sørensen PG: Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem. 2001, 94: 121-163. 10.1016/S0301-4622(01)00229-0.
Article
CAS
Google Scholar
Brusch L, Cuniberti G, Bertau M: Model evaluation for glycolytic oscillations in yeast biotransformations of xenobiotics. Biophys Chem. 2004, 109: 413-426. 10.1016/j.bpc.2003.12.004.
Article
CAS
Google Scholar
Jones DL, Petty J, Hoyle DC, Hayes A, Ragni E, Popolo L, Oliver SG, Stateva L: Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway. Physiol Genomics. 2003, 16: 107-118. 10.1152/physiolgenomics.00139.2003.
Article
CAS
Google Scholar
Sass P, Field J, Nikawa J, Toda T, Wigler M: Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1986, 83: 9303-9307. 10.1073/pnas.83.24.9303.
Article
CAS
Google Scholar
Williamson T: Systems studies of the cAMP pathway and glycolytic oscillations in yeast. 2009, UK: University of Manchester, Faculty of Life Sciences, PhD Thesis
Google Scholar
Nikawa J, Sass P, Wigler M: Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol Cell Biol. 1987, 7: 3629-3636.
Article
CAS
Google Scholar
Xue Y, Batlle M, Hirsch JP: GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J. 1998, 17: 1996-2007. 10.1093/emboj/17.7.1996.
Article
CAS
Google Scholar
Nakafuku M, Obara T, Kaibuchi K, Miyajima I, Miyajima A, Itoh H, et al., et al: Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc Natl Acad Sci USA. 1988, 85: 1374-1378. 10.1073/pnas.85.5.1374.
Article
CAS
Google Scholar
Toda T, Cameron S, Sass P, Zoller M, Wigler M: Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell. 1987, 50: 277-287. 10.1016/0092-8674(87)90223-6.
Article
CAS
Google Scholar
Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto K, Toh-e A: IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol. 1990, 10: 4303-4313.
Article
CAS
Google Scholar
Nikawa J, Cameron S, Toda T, Ferguson KM, Wigler M: Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Gen Dev. 1987, 1: 931-937. 10.1101/gad.1.9.931.
Article
CAS
Google Scholar
Arvanitidis A, Heinisch JJ: Studies on the function of yeast phosphofructokinase subunits by in vitro mutagenesis. J Biol Chem. 1994, 269: 8911-8918.
CAS
Google Scholar
Rodicio R, Strauß A, Heinisch JJ: Single point mutations in either gene encoding the subunits of the heterooctameric yeast phopshofructokinase abolish allosteric inhibition by ATP. J Biol Chem. 2000, 29: 40952-40960.
Article
Google Scholar
Tijane MN, Chaffotte AF, Seydoux FJ, Roucous C, Laurent M: Sulfhydryl groups of yeast phosphofructokinase-specific localization on beta subunits of fructose 6-phosphate binding sites as demonstrated by a differential chemical labeling study. J Biol Chem. 1980, 255: 10188-10193.
CAS
Google Scholar
Danø S, Sørensen PG, Hynne F: Sustained oscillations in living cells. Nature. 1999, 402: 320-322. 10.1038/46329.
Article
Google Scholar
De Winde JH, Crauwels M, Hohmann S, Thevelein JM, Winderickx J: Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem. 1996, 241: 633-643. 10.1111/j.1432-1033.1996.00633.x.
Article
CAS
Google Scholar
De Risi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Sci. 1997, 278: 680-686. 10.1126/science.278.5338.680.
Article
CAS
Google Scholar
Reijenga K, Westerhoff HV, Kholodenko BN, Snoep JL: Control analysis for autonomously oscillating biochemical networks. Biophys J. 2002, 82: 99-108. 10.1016/S0006-3495(02)75377-0.
Article
CAS
Google Scholar
Tseng YY, Hunt SM, Heintzen C, Crosthwaite SK, Schwartz JM: Comprehensive modelling of the Neurospora circadian clock and its temperature compensation. PLoS Comput Biol. 2012, 8: e1002437-10.1371/journal.pcbi.1002437.
Article
CAS
Google Scholar
Ihekwaba AE, Broomhead DS, Grimley RL, Benson N, Kell DB: Sensitivity analysis of parameters controlling oscillatory signalling in the NF-κB pathway: the roles of IKK and IκBα. Syst Biol. 2004, 1: 93-103. 10.1049/sb:20045009.
Article
CAS
Google Scholar
Kim TH, Shin SY, Choo SM, Cho KH: Dynamical analysis of the calcium signaling pathway in cardiac myocytes based on logarithmic sensitivity analysis. Biotechnol J. 2008, 3: 639-647. 10.1002/biot.200700247.
Article
CAS
Google Scholar
Nielsen K, Sørensen PG, Hynne F, Busse HG: Sustained oscillations in glycolysis: an experimental and theoretical study of chaotic and complex periodic behaviour and of quenching of simple oscillations. Biophys Chem. 1998, 72: 49-62. 10.1016/S0301-4622(98)00122-7.
Article
CAS
Google Scholar
Richard P: The rhythm of yeast. FEMS Microbiol Rev. 2003, 27: 547-557. 10.1016/S0168-6445(03)00065-2.
Article
CAS
Google Scholar
Kloster A, Olsen LF: Oscillations in glycolysis in Saccharomyces cerevisiae: The role of autocatalysis and intracellular ATPase activity. Biophys Chem. 2012, 165–166: 39-77.
Article
Google Scholar
Ytting CK, Fugslang AT, Hiltunen JK, Kastaniotis AJ, Özalp VC, Nielsen LJ, Olsen LF: Measurements of intracellular ATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae. Integr Biol. 2012, 4: 99-107. 10.1039/c1ib00108f.
Article
CAS
Google Scholar