Varma A, Palsson BO: Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol. 1994, 12 (10): 994-998. 10.1038/nbt1094-994.
Article
Google Scholar
Orth JD, Thiele I, Palsson BO: What is flux balance analysis?. Nat Biotechnol. 2010, 28 (3): 245-248. 10.1038/nbt.1614.
Article
Google Scholar
Knorr AL, Jain R, Srivastava R: Bayesian-based selection of metabolic objective functions. Bioinformatics. 2007, 23 (3): 351-357. 10.1093/bioinformatics/btl619.
Article
Google Scholar
Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007, 3: 119-
Article
Google Scholar
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol. 2007, 3: 121-
Article
Google Scholar
Duarte NC, Herrgard MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14 (7): 1298-1309. 10.1101/gr.2250904.
Article
Google Scholar
Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007, 104 (6): 1777-1782. 10.1073/pnas.0610772104.
Article
Google Scholar
Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R: Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem. 2007, 282 (39): 28791-28799. 10.1074/jbc.M703759200.
Article
Google Scholar
Oberhardt MA, Puchalka J, Fryer KE, Santos VA Md, Papin JA: Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol. 2008, 190 (8): 2790-2803. 10.1128/JB.01583-07.
Article
Google Scholar
Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Santos VA Md: Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol. 2008, 4 (10): e1000210-10.1371/journal.pcbi.1000210.
Article
Google Scholar
Thiele I, Vo TD, Price ND, Palsson BO: Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol. 2005, 187 (16): 5818-5830. 10.1128/JB.187.16.5818-5830.2005.
Article
Google Scholar
Fong SS, Palsson BO: Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet. 2004, 36 (10): 1056-1058. 10.1038/ng1432.
Article
Google Scholar
Deutscher D, Meilijson I, Kupiec M, Ruppin E: Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet. 2006, 38 (9): 993-998. 10.1038/ng1856.
Article
Google Scholar
Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL: Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature. 2004, 427 (6977): 839-843. 10.1038/nature02289.
Article
Google Scholar
Herrgard MJ, Lee BS, Portnoy V, Palsson BO: Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 2006, 16 (5): 627-635. 10.1101/gr.4083206.
Article
Google Scholar
Downer J, Sevinsky JR, Ahn NG, Resing KA, Betterton MD: Incorporating expression data in metabolic modeling: a case study of lactate dehydrogenase. J Theor Biol. 2006, 240 (3): 464-474. 10.1016/j.jtbi.2005.10.007.
Article
Google Scholar
Rossell S, van der Weijden CC, Kruckeberg AL, Bakker BM, Westerhoff HV: Hierarchical and metabolic regulation of glucose influx in starved Saccharomyces cerevisiae. FEMS Yeast Res. 2005, 5 (6–7): 611-619.
Article
Google Scholar
Rossell S, van der Weijden CC, Lindenbergh A, van Tuijl A, Francke C, Bakker BM, Westerhoff HV: Unraveling the complexity of flux regulation: a new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2006, 103 (7): 2166-2171. 10.1073/pnas.0509831103.
Article
Google Scholar
ter Kuile BH, Westerhoff HV: Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett. 2001, 500 (3): 169-171. 10.1016/S0014-5793(01)02613-8.
Article
Google Scholar
de la Fuente A, Snoep JL, Westerhoff HV, Mendes P: Metabolic control in integrated biochemical systems. Eur J Biochem. 2002, 269 (18): 4399-4408. 10.1046/j.1432-1033.2002.03088.x.
Article
Google Scholar
Covert MW, Palsson BO: Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol. 2003, 221 (3): 309-325. 10.1006/jtbi.2003.3071.
Article
Google Scholar
Covert MW, Palsson BO: Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem. 2002, 277 (31): 28058-28064. 10.1074/jbc.M201691200.
Article
Google Scholar
Covert MW, Schilling CH, Palsson B: Regulation of gene expression in flux balance models of metabolism. J Theor Biol. 2001, 213 (1): 73-88. 10.1006/jtbi.2001.2405.
Article
Google Scholar
Gianchandani EP, Papin JA, Price ND, Joyce AR, Palsson BO: Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput Biol. 2006, 2 (8): e101-10.1371/journal.pcbi.0020101.
Article
Google Scholar
Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO: Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004, 429 (6987): 92-96. 10.1038/nature02456.
Article
Google Scholar
Akesson M, Forster J, Nielsen J: Integration of gene expression data into genome-scale metabolic models. Metab Eng. 2004, 6 (4): 285-293. 10.1016/j.ymben.2003.12.002.
Article
Google Scholar
Becker SA, Palsson BO: Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol. 2008, 4 (5): e1000082-10.1371/journal.pcbi.1000082.
Article
Google Scholar
Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, Moody DB, Murray M, Galagan JE: Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol. 2009, 5 (8): e1000489-10.1371/journal.pcbi.1000489.
Article
Google Scholar
Shlomi T, Eisenberg Y, Sharan R, Ruppin E: A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol. 2007, 3: 101-
Article
Google Scholar
Jensen PA, Papin JA: Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics. 2011, 27 (4): 541-547. 10.1093/bioinformatics/btq702.
Article
Google Scholar
Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E: Network-based prediction of human tissue-specific metabolism. Nat Biotechnol. 2008, 26 (9): 1003-1010. 10.1038/nbt.1487.
Article
Google Scholar
Zur H, Ruppin E, Shlomi T: iMAT: an integrative metabolic analysis tool. Bioinformatics. 2010, 26 (24): 3140-3142. 10.1093/bioinformatics/btq602.
Article
Google Scholar
Jerby L, Shlomi T, Ruppin E: Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol. 2010, 6: 401-
Article
Google Scholar
Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T: Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol. 2011, 7: 501-
Article
Google Scholar
Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T: Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci USA. 2012, 109 (1): 339-344. 10.1073/pnas.1100358109.
Article
Google Scholar
Lee D, Smallbone K, Dunn WB, Murabito E, Winder CL, Kell DB, Mendes P, Swainston N: Improving metabolic flux predictions using absolute gene expression data. BMC Syst Biol. 2012, 6 (1): 73-10.1186/1752-0509-6-73.
Article
Google Scholar
Navid A, Almaas E: Genome-scale reconstruction of the metabolic network in Yersinia pestis, strain 91001. Mol Biosyst. 2009, 5 (4): 368-375. 10.1039/b818710j.
Article
Google Scholar
Chromy BA, Choi MW, Murphy GA, Gonzales AD, Corzett CH, Chang BC, Fitch JP, McCutchen-Maloney SL: Proteomic characterization of Yersinia pestis virulence. J Bacteriol. 2005, 187 (23): 8172-8180. 10.1128/JB.187.23.8172-8180.2005.
Article
Google Scholar
Konkel ME, Tilly K: Temperature-regulated expression of bacterial virulence genes. Microbes Infect. 2000, 2 (2): 157-166. 10.1016/S1286-4579(00)00272-0.
Article
Google Scholar
Navid A, Almaas E: Genome-scale Reconstruction of Metabolic Network Yersinia Pestis, strain 91001. Mol Biosyst. 2009, 10.1039/b818710j.
Google Scholar
Song Y, Tong Z, Wang J, Wang L, Guo Z, Han Y, Zhang J, Pei D, Zhou D, Qin H, et al.: Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res. 2004, 11 (3): 179-197. 10.1093/dnares/11.3.179.
Article
Google Scholar
Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M: Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun. 2002, 70 (8): 4092-4098. 10.1128/IAI.70.8.4092-4098.2002.
Article
Google Scholar
Knirel YA, Dentovskaya SV, Senchenkova SN, Shaikhutdinova RZ, Kocharova NA, Anisimov AP: Structural features and structural variability of the lipopolysaccharide of Yersinia pestis, the cause of plague. J Endotoxin Res. 2006, 12 (1): 3-9.
Google Scholar
Knirel YA, Lindner B, Vinogradov E, Shaikhutdinova RZ, Senchenkova SN, Kocharova NA, Holst O, Pier GB, Anisimov AP: Cold temperature-induced modifications to the composition and structure of the lipopolysaccharide of Yersinia pestis. Carbohydr Res. 2005, 340 (9): 1625-1630. 10.1016/j.carres.2005.04.007.
Article
Google Scholar
Knirel YA, Lindner B, Vinogradov EV, Kocharova NA, Senchenkova SN, Shaikhutdinova RZ, Dentovskaya SV, Fursova NK, Bakhteeva IV, Titareva GM, et al.: Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry. 2005, 44 (5): 1731-1743. 10.1021/bi048430f.
Article
Google Scholar
Charusanti P, Chauhan S, McAteer K, Lerman JA, Hyduke DR, Motin VL, Ansong C, Adkins JN, Palsson BO: An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92. BMC Syst Biol. 2011, 5: 163-10.1186/1752-0509-5-163.
Article
Google Scholar
Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, et al.: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011, 6 (9): 1290-1307. 10.1038/nprot.2011.308.
Article
Google Scholar
Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003, 5 (4): 264-276. 10.1016/j.ymben.2003.09.002.
Article
Google Scholar
Price ND, Famili I, Beard DA, Palsson BO: Extreme pathways and Kirchhoff's second law. Biophys J. 2002, 83 (5): 2879-2882. 10.1016/S0006-3495(02)75297-1.
Article
Google Scholar
Daran-Lapujade P, Jansen ML, Daran JM, van Gulik W, de Winde JH, Pronk JT: Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem. 2004, 279 (10): 9125-9138. 10.1074/jbc.M309578200.
Article
Google Scholar
Lange H: Quantitative physiology of S. cerevisiae using metabolic network analysis. PhD thesis. 2002, The Netherlands: Technical University Delft, Delft
Google Scholar
Segre D, Vitkup D, Church GM: Analysis of optimality in natural and perturbed metabolic networks. P Natl Acad Sci USA. 2002, 99 (23): 15112-15117. 10.1073/pnas.232349399.
Article
Google Scholar
Oh MK, Liao JC: Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol Prog. 2000, 16 (2): 278-286. 10.1021/bp000002n.
Article
Google Scholar
Oh MK, Rohlin L, Kao KC, Liao JC: Global expression profiling of acetate-grown Escherichia coli. J Biol Chem. 2002, 277 (15): 13175-13183. 10.1074/jbc.M110809200.
Article
Google Scholar
Lee S, Palakornkule C, Domach MM, Grossmann IE: Recursive MILP model for finding all the alternate optima in LP models for metabolic networks. Comput Chem Eng. 2000, 24 (2–7): 711-716.
Article
Google Scholar
Titball RW, Leary SE: Plague. Br Med Bull. 1998, 54 (3): 625-633. 10.1093/oxfordjournals.bmb.a011715.
Article
Google Scholar
Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, Gage KL, Leirs H, Rahalison L: Plague: past, present, and future. PLoS Med. 2008, 5 (1): e3-10.1371/journal.pmed.0050003.
Article
Google Scholar
Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Courvalin P: Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med. 1997, 337 (10): 677-680. 10.1056/NEJM199709043371004.
Article
Google Scholar
Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, Chanteau S, Courvalin P, Carniel E: Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis. 2001, 7 (1): 43-48. 10.3201/eid0701.010106.
Article
Google Scholar
Lindler LE, Fan W, Jahan N: Detection of ciprofloxacin-resistant Yersinia pestis by fluorogenic PCR using the LightCycler. J Clin Microbiol. 2001, 39 (10): 3649-3655. 10.1128/JCM.39.10.3649-3655.2001.
Article
Google Scholar
Han Y, Zhou D, Pang X, Song Y, Zhang L, Bao J, Tong Z, Wang J, Guo Z, Zhai J, et al.: Microarray analysis of temperature-induced transcriptome of Yersinia pestis. Microbiol Immunol. 2004, 48 (11): 791-805.
Article
Google Scholar
Motin VL, Georgescu AM, Fitch JP, Gu PP, Nelson DO, Mabery SL, Garnham JB, Sokhansanj BA, Ott LL, Coleman MA, et al.: Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol. 2004, 186 (18): 6298-6305. 10.1128/JB.186.18.6298-6305.2004.
Article
Google Scholar
Qiu J, Zhou D, Han Y, Zhang L, Tong Z, Song Y, Dai E, Li B, Wang J, Guo Z, et al.: Global gene expression profile of Yersinia pestis induced by streptomycin. FEMS Microbiol Lett. 2005, 243 (2): 489-496. 10.1016/j.femsle.2005.01.018.
Article
Google Scholar
Qiu J, Zhou D, Qin L, Han Y, Wang X, Du Z, Song Y, Yang R: Microarray expression profiling of Yersinia pestis in response to chloramphenicol. FEMS Microbiol Lett. 2006, 263 (1): 26-31. 10.1111/j.1574-6968.2006.00394.x.
Article
Google Scholar
Pollack C, Straley SC, Klempner MS: Probing the phagolysosomal environment of human macrophages with a Ca2+−responsive operon fusion in Yersinia pestis. Nature. 1986, 322 (6082): 834-836. 10.1038/322834a0.
Article
Google Scholar
Brubaker RR: Expression of virulence in yersiniae. 1979, Washington, DC: Microbiology-1979 American Society for Microbiology, 168-171.
Google Scholar
Brubaker B: Yersinia pestis and bubonic plague. Prokaryotes. 2006, 6: 399-442.
Google Scholar
Hoe NP, Goguen JD: Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol. 1993, 175 (24): 7901-7909.
Google Scholar
Straley SC, Bowmer WS: Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun. 1986, 51 (2): 445-454.
Google Scholar
Yamada T, Letunic I, Okuda S, Kanehisa M, Bork P: iPath2.0: interactive pathway explorer. Nucleic Acids Res. 2011, 39 (Web Server issue): W412-415.
Article
Google Scholar
Igarashi K, Kashiwagi K: Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun. 2000, 271 (3): 559-564. 10.1006/bbrc.2000.2601.
Article
Google Scholar
Tabor CW, Tabor H: Polyamines in microorganisms. Microbiol Rev. 1985, 49 (1): 81-99.
Google Scholar
Vadyvaloo V, Jarrett C, Sturdevant D, Sebbane F, Hinnebusch BJ: Analysis of Yersinia pestis gene expression in the flea vector. Adv Exp Med Biol. 2007, 603: 192-200. 10.1007/978-0-387-72124-8_16.
Article
Google Scholar
Wallace HM, Fraser AV, Hughes A: A perspective of polyamine metabolism. Biochem J. 2003, 376 (Pt 1): 1-14.
Article
Google Scholar
Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA: Polyamines are essential for the formation of plague biofilm. J Bacteriol. 2006, 188 (7): 2355-2363. 10.1128/JB.188.7.2355-2363.2006.
Article
Google Scholar
Wortham BW, Patel CN, Oliveira MA: Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol. 2007, 603: 106-115. 10.1007/978-0-387-72124-8_9.
Article
Google Scholar
Tkachenko AG, Pshenichnov MR, Nesterova L: Putrescine as a oxidative stress protecting factor in Escherichia coli. Mikrobiologiia. 2001, 70 (4): 487-494.
Google Scholar
Han Y, Geng J, Qiu Y, Guo Z, Zhou D, Bi Y, Du Z, Song Y, Wang X, Tan Y, et al.: Physiological and regulatory characterization of KatA and KatY in Yersinia pestis. DNA Cell Biol. 2008, 27 (8): 453-462. 10.1089/dna.2007.0657.
Article
Google Scholar
Burrows TW, Farrell JM, Gillett WA: The Catalase Activities Of Pasteurella Pestis And Other Bacteria. Br J Exp Pathol. 1964, 45: 579-588.
Google Scholar
Sebbane F, Lemaitre N, Sturdevant DE, Rebeil R, Virtaneva K, Porcella SF, Hinnebusch BJ: Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc Natl Acad Sci USA. 2006, 103 (31): 11766-11771. 10.1073/pnas.0601182103.
Article
Google Scholar
Englesberg E, Gibor A, Levy JB: Adaptive control of terminal respiration in Pasteurella pestis. J Bacteriol. 1954, 68 (2): 146-151.
Google Scholar
Meyer KF: Modern therapy of plague. J Am Med Assoc. 1950, 144 (12): 982-985. 10.1001/jama.1950.02920120006003.
Article
Google Scholar
Linkswiler H, Baumann CA, Snell EE: Effect of aureomycin on the response of rats to various forms of vitamin B6. J Nutr. 1951, 43 (4): 565-573.
Google Scholar
Lih H, Baumann CA: Effects of certain antibiotics on the growth of rats fed diets limiting in thiamine, riboflavin or pantothenic acid. J Nutr. 1951, 45 (1): 143-152.
Google Scholar
Sauberlich HE: Effect of aureomycin and penicillin upon the vitamin requirements of the rat. J Nutr. 1952, 46 (1): 99-108.
Google Scholar
Guggenheim K, Halevy S, Hartmann I, Zamir R: The effect of antibiotics on the metabolism of certain B vitamins. J Nutr. 1953, 50 (2): 245-253.
Google Scholar
Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28 (1): 27-10.1093/nar/28.1.27.
Article
Google Scholar
Zahorchak RJ, Charnetzky WT, Little RV, Brubaker RR: Consequences of Ca2+ deficiency on macromolecular synthesis and adenylate energy charge in Yersinia pestis. J Bacteriol. 1979, 139 (3): 792-799.
Google Scholar
Gygi SP, Rochon Y, Franza BR, Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999, 19 (3): 1720-1730.
Article
Google Scholar
Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001, 292 (5518): 929-934. 10.1126/science.292.5518.929.
Article
Google Scholar
Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003, 4 (9): 117-10.1186/gb-2003-4-9-117.
Article
Google Scholar
Corton JM, Gillespie JG, Hardie DG: Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol. 1994, 4 (4): 315-324. 10.1016/S0960-9822(00)00070-1.
Article
Google Scholar
Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature. 2000, 408 (6809): 239-247. 10.1038/35041687.
Article
Google Scholar
Tiwari BS, Belenghi B, Levine A: Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 2002, 128 (4): 1271-1281. 10.1104/pp.010999.
Article
Google Scholar
Anand N, Davis BD: Damage by streptomycin to the cell membrane of Escherichia coli. Nature. 1960, 185: 22-23. 10.1038/185022a0.
Article
Google Scholar
Busse HJ, Wostmann C, Bakker EP: The bactericidal action of streptomycin: membrane permeabilization caused by the insertion of mistranslated proteins into the cytoplasmic membrane of Escherichia coli and subsequent caging of the antibiotic inside the cells due to degradation of these proteins. J Gen Microbiol. 1992, 138 (3): 551-561.
Article
Google Scholar
Kohanski M, Dwyer D, Hayete B, Lawrence C, Collins J: A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007, 130 (5): 797-810. 10.1016/j.cell.2007.06.049.
Article
Google Scholar