Massagué J. The transforming growth factor- *β* family. Annu Rev Cell Biol. 1990; 6:597–641.

Article
PubMed
Google Scholar

Clarke DC, Liu X. Decoding the quantitative nature of TGF- *β*/Smad signaling. Trends Cell Biol. 2008; 18(9):430–42.

Article
CAS
PubMed
PubMed Central
Google Scholar

Shi Y, Massagué J. Mechanisms of TGF- *β* signaling from cell membrane to the nucleus. Cell. 2003; 113(6):685–700.

Article
CAS
PubMed
Google Scholar

Feng XH, Derynck R. Specificity and versatility in TGF- *β* signaling through Smads. Annu Rev Cell Dev Biol. 2005; 21:659–93.

Article
CAS
PubMed
Google Scholar

Jenkins G. The role of proteases in transforming growth factor- *β* activation. Int J Biochem Cell Biol. 2008; 40(6):1068–78.

Article
CAS
PubMed
Google Scholar

Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005; 19(23):2783–810.

Article
PubMed
Google Scholar

ten Dijke P, Miyazono K, Heldin CH. Signaling inputs converge on nuclear effectors in TGF- *β* signaling. Trends Biochem Sci. 2000; 25(2):64–70.

Article
CAS
PubMed
Google Scholar

Massagué J. TGF- *β* signal transduction. Ann Rev Biochem. 1998; 67(1):753–91.

Article
PubMed
Google Scholar

Nicolás FJ, Hill CS. Attenuation of the TGF- *β*-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF- *β*-induced growth arrest. Oncogene. 2003; 22(24):3698–711.

Article
PubMed
Google Scholar

Jenkins BJ, Grail D, Nheu T, Najdovska M, Wang B, Waring P, Inglese M, McLoughlin RM, Jones SA, Topley N, Baumann H, Judd LM, Giraud AS, Boussioutas A, Zhu HJ, Ernst M. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF- *β* signaling. Nat Med. 2005; 11(8):845–52.

Article
CAS
PubMed
Google Scholar

Massagué J, Blain SW, Lo RS. TGF- *β* signaling in growth control, cancer, and heritable disorders. Cell. 2000; 103(2):295–309.

Article
PubMed
Google Scholar

Bachman KE, Park BH. Duel nature of TGF- *β* signaling: tumor suppressor vs. tumor promoter. Curr Opin Oncol. 2005; 17(1):49–54.

Article
CAS
PubMed
Google Scholar

Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. Matrix rigidity regulates a switch between TGF- *β*1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell. 2012; 23(5):781–91.

Article
CAS
PubMed
PubMed Central
Google Scholar

Ikushima H, Miyazono K. Biology of transforming growth factor- *β* signaling. Curr Pharm Biotechnol. 2011; 12(12):2099–107.

Article
CAS
PubMed
Google Scholar

Attisano L, Wrana JL. Signal transduction by the TGF- *β* superfamily. Sci Signal. 2002; 296(5573):1646.

CAS
Google Scholar

Melke P, Jönsson H, Pardali E, ten Dijke P, Peterson C. A rate equation approach to elucidate the kinetics and robustness of the TGF- *β* pathway. Biophys J. 2006; 91(12):4368–80.

Article
CAS
PubMed
PubMed Central
Google Scholar

Vilar JMG, Jansen R, Sander C. Signal Processing in the TGF- *β* Superfamily Ligand-Receptor Network. PLoS Comput Biol. 2006; 2(1):3.

Article
Google Scholar

Clarke DC, Brown ML, Erickson RA, Shi Y, Liu X. Transforming growth factor beta depletion is the primary determinant of Smad signaling kinetics. Mol Cell Biol. 2009; 29(9):2443–55.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zi Z, Klipp E. Constraint-Based Modeling and Kinetic Analysis of the Smad Dependent TGF- *β* Signaling Pathway. PLoS ONE. 2007; 2(9):936.

Article
Google Scholar

Schmierer B, Tournier AL, Bates PA, Hill CS. Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system. Proc Natl Acad Sci. 2008; 105(18):6608–613.

Article
CAS
PubMed
PubMed Central
Google Scholar

Chung SW, Miles FL, Sikes RA, Cooper CR, Farach-Carson MC, Ogunnaike BA. Quantitative modeling and analysis of the transforming growth factor beta signaling pathway. Biophys J. 2009; 96(5):1733–50.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zi Z, Feng Z, Chapnick DA, Dahl M, Deng D, Klipp E, Moustakas A, Liu X. Quantitative analysis of transient and sustained transforming growth factor- *β* signaling dynamics. Mol Syst Biol. 2011; 7:492.

Article
PubMed
PubMed Central
Google Scholar

Zi Z, Klipp E. SBML-PET: a Systems Biology Markup Language-based parameter estimation tool. Bioinformatics. 2006; 22(21):2704–5.

Article
CAS
PubMed
Google Scholar

Bachmann J, Raue A, Schilling M, Becker V, Timmer J, Klingmuller U. Predictive mathematical models of cancer signalling pathways. J Intern Med. 2012; 271(2):155–65.

Article
CAS
PubMed
Google Scholar

Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, ten Dijke P. TGF- *β* receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 1997; 16(17):5353–62.

Article
CAS
PubMed
PubMed Central
Google Scholar

Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF- *β*/Smad3-Azin1 pathway. Kidney Int. 2013; 84(6):1129–44.

Article
CAS
PubMed
Google Scholar

Kahana C. Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor. Essays Biochem. 2009; 46:47–62.

Article
CAS
PubMed
Google Scholar

Liu L, Santora R, Rao JN, Guo X, Zou T, Zhang HM, Turner DJ, Wang JY. Activation of TGF- *β*-Smad signaling pathway following polyamine depletion in intestinal epithelial cells. Am J Physiology-Gastrointestinal Liver Physiol. 2003; 285(5):1056–67.

Article
Google Scholar

Rao JN, Li L, Bass BL, Wang JY. Expression of the TGF- *β* receptor gene and sensitivity to growth inhibition following polyamine depletion. Am J Physiology-Cell Physiol. 2000; 279(4):1034–44.

Google Scholar

Patel AR, Li J, Bass BL, Wang JY. Expression of the transforming growth factor- *β* gene during growth inhibition following polyamine depletion. Am J Physiology-Cell Physiol. 1998; 275(2):590–8.

Google Scholar

Shi F, Zhou P, Wang R. Coupled positive feedback loops regulate the biological behavior. IEEE 2012;169–73.

Ferrell JE, Ha SH, et al. Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback. Trends Biochem Sci. 2014; 39(11):556–69.

Article
CAS
PubMed
PubMed Central
Google Scholar

Ferrell JE, Ha SH. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends Biochem Sci. 2014; 39(10):496–503.

Article
CAS
PubMed
PubMed Central
Google Scholar

Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. Bioessays. 2008; 30(6):542–55.

Article
CAS
PubMed
PubMed Central
Google Scholar

Chang DE, Leung S, Atkinson MR, Reifler A, Forger D, Ninfa AJ. Building biological memory by linking positive feedback loops. Proc Natl Acad Sci. 2010; 107(1):175–80.

Article
CAS
PubMed
Google Scholar

Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Büchler M, Falb D, Korc M. The TGF- *β* signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene. 1999; 18(39):5363–372.

Article
CAS
PubMed
Google Scholar

Wagner J, Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994; 67(1):447.

Article
CAS
PubMed
PubMed Central
Google Scholar

Massagué J, Gomis RR. The logic of tgf *β* signaling. FEBS Lett. 2006; 580(12):2811–20.

Article
PubMed
Google Scholar

Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R. Tgf- *β* activates erk map kinase signalling through direct phosphorylation of shca. EMBO J. 2007; 26(17):3957–67.

Article
CAS
PubMed
PubMed Central
Google Scholar

Mu Y, Gudey SK, Landström M. Non-smad signaling pathways. Cell Tissue Res. 2012; 347(1):11–20.

Article
CAS
PubMed
Google Scholar

Wang X, Li X, Ye L, Chen W, Yu X. Smad7 inhibits tgf- *β*1-induced mcp-1 upregulation through a mapk/p38 pathway in rat peritoneal mesothelial cells. Int Urol Nephrol. 2013; 45(3):899–907.

Article
CAS
PubMed
Google Scholar

Yu L, Hébert MC, Zhang YE. Tgf- *β* receptor-activated p38 map kinase mediates smad-independent tgf- *β* responses. EMBO J. 2002; 21(14):3749–59.

Article
CAS
PubMed
PubMed Central
Google Scholar

Wieser R, Wrana J, Massagué J. GS domain mutations that constitutively activate T beta RI, the downstream signaling component in the TGF- *β* receptor complex. EMBO J. 1995; 14(10):2199.

CAS
PubMed
PubMed Central
Google Scholar

Heldin CH, Miyazono K, Ten Dijke P. TGF- *β* signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997; 390(6659):465–71.

Article
CAS
PubMed
Google Scholar

Hayes S, Chawla A, Corvera S. TGF *β* receptor internalization into EEA1-enriched early endosomes role in signaling to Smad2. J Cell Biol. 2002; 158(7):1239–49.

Article
CAS
PubMed
PubMed Central
Google Scholar

Massagué J, Kelly B. Internalization of transforming growth factor- *β* and its receptor in BALB/c 3T3 fibroblasts. J Cell Physiol. 1986; 128(2):216–22.

Article
PubMed
Google Scholar

Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF- *β*-induced transcription. Nature. 1998; 394(6696):909–13.

Article
CAS
PubMed
Google Scholar

Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, et al. A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF- *β* mediated epithelial–mesenchymal transition. Nat Cell Biol. 2009; 11(8):943–50.

Article
CAS
PubMed
PubMed Central
Google Scholar

Fall CP. Computational Cell Biology Interdisciplinary Applied Mathematics; V. 20. New York: Springer-Verlag; 2002.

Google Scholar

Luo K, Lodish H. Signaling by chimeric erythropoietin-TGF- *β* receptors: homodimerization of the cytoplasmic domain of the type I TGF- *β* receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 1996; 15(17):4485.

CAS
PubMed
PubMed Central
Google Scholar

Ebner R, Chen RH, Shum L, Lawler S, Zioncheck TF, Lee A, Lopez AR, Derynck R. Cloning of a type I TGF- *β* receptor and its effect on TGF- *β* binding to the type II receptor. Science. 1993; 260(5112):1344–8.

Article
CAS
PubMed
Google Scholar

Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, et al. Crystal structure of a phosphorylated Smad2: Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF- *β* signaling. Mol Cell. 2001; 8(6):1277–89.

Article
CAS
PubMed
Google Scholar

Jenkins BJ, Grail D, Nheu T, Najdovska M, Wang B, Waring P, Inglese M, McLoughlin RM, Jones SA, Topley N, et al. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF- *β* signaling. Nat Med. 2005; 11(8):845–52.

Article
CAS
PubMed
Google Scholar

Budi EH, Xu J, Derynck R. Regulation of TGF- *β* Receptors. Methods in molecular biology (Clifton, NJ). 2016; 1344:1.

Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Impaired smad7-smurf–mediated negative regulation of tgf- *β* signaling in scleroderma fibroblasts. J Clin Investig. 2004; 113(2):253.

Article
CAS
PubMed
PubMed Central
Google Scholar

Kang JS, Liu C, Derynck R. New regulatory mechanisms of TGF- *β* receptor function. Trends Cell Biol. 2009; 19(8):385–94.

Article
CAS
PubMed
Google Scholar

Massagué J, Attisano L, Wrana JL. The TGF- *β* family and its composite receptors. Trends Cell Biol. 1994; 4(5):172–8.

Article
PubMed
Google Scholar

Groppe J, Hinck CS, Samavarchi-Tehrani P, Zubieta C, Schuermann JP, Taylor AB, Schwarz PM, Wrana JL, Hinck AP. Cooperative assembly of TGF- *β* superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Mol Cell. 2008; 29(2):157–68.

Article
CAS
PubMed
Google Scholar

Kingsley DM. The TGF- *β* superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994; 8(2):133–46.

Article
CAS
PubMed
Google Scholar

Gunawardena J. Time-scale separation–michaelis and menten’s old idea, still bearing fruit. FEBS J. 2014; 281(2):473–88.

Article
CAS
PubMed
Google Scholar

von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Böttinger EP. Smad3 and smad4 mediate transcriptional activation of the human smad7 promoter by transforming growth factor *β*. J Biol Chem. 2000; 275(15):11320–6.

Article
CAS
PubMed
Google Scholar

Yan X, Liao H, Cheng M, Shi X, Lin X, Feng XH, Chen YG. Smad7 protein interacts with receptor-regulated smads (r-smads) to inhibit transforming growth factor- *β* (tgf- *β*)/smad signaling. J Biol Chem. 2016; 291(1):382–92.

Article
CAS
PubMed
Google Scholar

Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K. Smurf1 interacts with transforming growth factor- *β* type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 2001; 276(16):12477–80.

Article
CAS
PubMed
Google Scholar

Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF *β* receptor for degradation. Mol Cell. 2000; 6(6):1365–75.

Article
CAS
PubMed
Google Scholar

Khalil HK, Vol. 3. Nonlinear Systems. New Jersey: Prentice-Hall; 1996.

Google Scholar

Inman GJ, Nicolás FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF- *β* receptor activity. Mol Cell. 2002; 10(2):283–94.

Article
CAS
PubMed
Google Scholar

Fleming NI, Jorissen RN, Mouradov D, Christie M, Sakthianandeswaren A, Palmieri M, Day F, Li S, Tsui C, Lipton L, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013; 73(2):725–35.

Article
CAS
PubMed
Google Scholar

Wakefield LM, Smith DM, Masui T, Harris CC, Sporn MB. Distribution and modulation of the cellular receptor for transforming growth factor- *β*. J Cell Biol. 1987; 105(2):965–75.

Article
CAS
PubMed
Google Scholar

Laiho M, Weis M, Massagué J. Concomitant loss of transforming growth factor (TGF)- *β* receptor types I and II in TGF- *β*-resistant cell mutants implicates both receptor types in signal transduction. J Biol Chem. 1990; 265(30):18518–24.

CAS
PubMed
Google Scholar

Kimchi A, Wang XF, Weinberg RA, Cheifetz S, Massagué J. Absence of TGF- *β* receptors and growth inhibitory responses in retinoblastoma cells. Science. 1988; 240(4849):196–9.

Article
CAS
PubMed
Google Scholar

Yu M, Trobridge P, Wang Y, Kanngurn S, Morris S, Knoblaugh S, Grady W. Inactivation of TGF- *β* signaling and loss of PTEN cooperate to induce colon cancer in vivo. Oncogene. 2014; 33(12):1538–47.

Article
CAS
PubMed
Google Scholar

Liu RY, Zeng Y, Lei Z, Wang L, Yang H, Liu Z, Zhao J, Zhang HT. Jak/stat3 signaling is required for tgf- *β*-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol. 2014; 44(5):1643–51.

CAS
PubMed
Google Scholar

Pickup M, Novitskiy S, Moses HL. The roles of TGF [beta] in the tumour microenvironment. Nat Rev Cancer. 2013; 13(11):788–99.

Article
CAS
PubMed
PubMed Central
Google Scholar

Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible tgf *β* signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009; 11(11):1287–96.

Article
CAS
PubMed
PubMed Central
Google Scholar

Langenskiöld M, Holmdahl L, Falk P, Angenete E, Ivarsson ML. Increased tgf-beta1 protein expression in patients with advanced colorectal cancer. J Surg Oncol. 2008; 97(5):409–15.

Article
PubMed
Google Scholar

Shariat SF, Shalev M, Menesses-Diaz A, Kim IY, Kattan MW, Wheeler TM, Slawin KM. Preoperative plasma levels of transforming growth factor beta1 (tgf- *β*1) strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol. 2001; 19(11):2856–64.

Article
CAS
PubMed
Google Scholar

Xiong B, Gong LL, Zhang F, Hu MB, Yuan HY. Tgf beta˜ 1 expression and angiogenesis in colorectal cancer tissue. World J Gastroenterol. 2002; 8(3):496–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Xu J, Acharya S, Sahin O, Zhang L, Lowery FJ, Sahin AA, Zhang XH-F, Hung MC, Yu D. Abstract lb-202: 14-3-3 *ζ* turns tgf- *β*’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of smad partners from p53 to gli2. Cancer Res. 2015; 75(15 Supplement):202.

Article
Google Scholar

Santibanez JF, Quintanilla M, Bernabeu C. TGF- *β*/TGF- *β* receptor system and its role in physiological and pathological conditions. Clin Sci. 2011; 121(6):233–51.

Article
CAS
PubMed
Google Scholar

Anzano M, Roberts A, Smith J, Sporn M, De Larco J. Sarcoma growth factor from conditioned medium is composed of both type *α* and type *β* transforming growth factors. Proc Natl Acad Sci U S A. 1983; 80:6264–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

De Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci. 1978; 75(8):4001–5.

Article
CAS
PubMed
PubMed Central
Google Scholar

Wagner J, Ma L, Rice J, Hu W, Levine A, Stolovitzky G. p53–Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. IEE Proc Syst Biol. 2005; 152(3):109–18.

Article
CAS
Google Scholar

Wagner J, Stolovitzky G. Stability and time-delay modeling of negative feedback loops. Proc IEEE. 2008; 96(8):1398–410.

Article
Google Scholar

Duffy I, Varacallo P, Klerk H, Hawker J. Endothelial and cancer cells have differing amounts of tgf beta receptors involved in angiogenesis. FASEB J. 2015; 29(1 Supplement):554–4.

Google Scholar

Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006; 6(7):508–19.

Article
CAS
PubMed
Google Scholar

Akhurst RJ, Derynck R. TGF- *β* signaling in cancer–a double-edged sword. Trends Cell Biol. 2001; 11(11):44–51.

Article
Google Scholar

Chen BS, Wu CC. On the calculation of signal transduction ability of signaling transduction pathways in intracellular communication: systematic approach. Bioinformatics. 2012; 28(12):1604–11.

Article
CAS
PubMed
Google Scholar

Choi S. Systems Biology Approaches: Solving New Puzzles in a Symphonic Manner. Systems Biology for Signaling Networks. New York: Springer; 2010, pp. 3–11.

Google Scholar

Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 Binds to Smurf2 to Form an E3 Ubiquitin Ligase that Targets the TGFbeta Receptor for Degradation. Mol Cell. 2000; 6(6):1365–75.

Article
CAS
PubMed
Google Scholar

Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF- *β* receptor signalling and turnover. Nat Cell Biol. 2003; 5(5):410–21.

Article
CAS
PubMed
Google Scholar