Sasse D. Dynamics of liver glycogen: the topochemistry of glycogen synthesis, glycogen content and glycogenolysis under the experimental conditions of glycogen accumulation and depletion. Histochemistry. 1975; 45(3):237–54.
Article
CAS
PubMed
Google Scholar
Häussinger D, Lamers WH, Moorman AF. Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme. 1992; 46(1-3):72–93.
Article
PubMed
Google Scholar
Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992; 53(3):275–354.
Article
CAS
PubMed
Google Scholar
Jungermann K, Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr. 1996; 16:179–203.
Article
CAS
PubMed
Google Scholar
Braeuning A, Ittrich C, Köhle C, Hailfinger S, Bonin M, Buchmann A, Schwarz M. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006; 273(22):5051–61.
Article
CAS
PubMed
Google Scholar
Torre C, Perret C, Colnot S. Molecular determinants of liver zonation. Prog Mol Biol Transl Sci. 2010; 97:127–50.
Article
CAS
PubMed
Google Scholar
Colnot S, Perret C. Liver Zonation In: Monga SPS, editor. Molecular Pathology of Liver Diseases. New York: Springer: 2011. p. 7–16.
Google Scholar
Kietzmann T. Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol. 2017; 11:622–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Mowry LE, Nejak-Bowen KN, Okabe H, Diegel CR, Lang RA, Williams BO, Monga SP. Beta-catenin signaling in murine liver zonation and regeneration: A Wnt-Wnt situation!. Hepatology. 2014; 60(3):964–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benhamouche S, Decaens T, Godard C, Chambrey R, Rickman DS, Moinard C, Vasseur-Cognet M, Kuo CJ, Kahn A, Perret C, Colnot S. Apc Tumor Suppressor Gene Is the "Zonation-Keeper" of Mouse Liver. Dev Cell. 2006; 10(6):759–70.
Article
CAS
PubMed
Google Scholar
Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology. 2006; 43(4):817–25.
Article
CAS
PubMed
Google Scholar
Burke ZD, Reed KR, Phesse TJ, Sansom OJ, Clarke AR, Tosh D. Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. Gastroenterology. 2009; 136(7):2316–24.
Article
CAS
PubMed
Google Scholar
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/beta-catenin pathway. Acta Physiol (Oxf). 2012; 204(1):74–109.
Article
CAS
Google Scholar
Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol. 2012; 4(11):007906.
Article
Google Scholar
Hecht A, Kemler R. Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep. 2000; 1(1):24–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kennell J, Cadigan KM. APC and beta-catenin degradation. Adv Exp Med Biol. 2009; 656:1–12.
Article
CAS
PubMed
Google Scholar
Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013; 5(1):007898.
Article
Google Scholar
Saito-Diaz K, Chen TW, Wang X, Thorne CA, Wallace HA, Page-McCaw A, Lee E. The way Wnt works: components and mechanism. Growth Factors. 2013; 31(1):1–31.
Article
CAS
PubMed
Google Scholar
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol. 2012; 4(12):007880.
Article
Google Scholar
Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012; 13(12):767–79.
Article
CAS
PubMed
Google Scholar
He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004; 131(8):1663–77.
Article
CAS
PubMed
Google Scholar
Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, Mohammed S, Heck AJ, Maurice MM, Mahmoudi T, Clevers H. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012; 149(6):1245–56.
Article
CAS
PubMed
Google Scholar
Tacchelly-Benites O, Wang Z, Yang E, Lee E, Ahmed Y. Toggling a conformational switch in Wnt/beta-catenin signaling: regulation of Axin phosphorylation. The phosphorylation state of Axin controls its scaffold function in two Wnt pathway protein complexes. Bioessays. 2013; 35(12):1063–70.
Article
CAS
PubMed
Google Scholar
Chen TW, Wallace HA, Lee E. Wnt Signal Transduction in the Cytoplasm: an Introduction to the Desctruction Complex In: Hoppler SP, Moon RT, editors. Wnt Signaling in Development and Disease: Molecular Mechanisms and Biological Functions. New Jersey: Wiley-Blackwell: 2014. p. 33–50.
Google Scholar
Cruciat CM, Niehrs C. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Med. 2013; 3(3):015081.
Article
Google Scholar
Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003; 116(Pt 13):2627–34.
Article
CAS
PubMed
Google Scholar
Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006; 25(57):7469–81.
Article
CAS
PubMed
Google Scholar
Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol. 2001; 3:683–6.
Article
CAS
PubMed
Google Scholar
Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol. 2001; 11(12):951–61.
Article
CAS
PubMed
Google Scholar
Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature. 2001; 411(6835):321–5.
Article
CAS
PubMed
Google Scholar
Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene. 2004; 23(52):8520–6.
Article
CAS
PubMed
Google Scholar
Gonzalez-Sancho JM, Aguilera O, Garcia JM, Pendas-Franco N, Pena C, Cal S, Garcia de Herreros A, Bonilla F, Munoz A. The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene. 2005; 24(6):1098–103.
Article
CAS
PubMed
Google Scholar
Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science. 2006; 314(5804):1447–50.
Article
CAS
PubMed
Google Scholar
Lee M, Chen GT, Puttock E, Wang K, Edwards RA, Waterman ML, Lowengrub J. Mathematical modeling links Wnt signaling to emergent patterns of metabolism in colon cancer. Mol Syst Biol. 2017; 13(2):912.
Article
PubMed
PubMed Central
Google Scholar
Shen Q, Fan J, Yang XR, Tan Y, Zhao W, Xu Y, Wang N, Niu Y, Wu Z, Zhou J, Qiu SJ, Shi YH, Yu B, Tang N, Chu W, Wang M, Wu J, Zhang Z, Yang S, Gu J, Wang H, Qin W. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Lancet Oncol. 2012; 13(8):817–26.
Article
CAS
PubMed
Google Scholar
Shi J, Keller JM, Zhang J, Keller ET. A review on the diagnosis and treatment of hepatocellular carcinoma with a focus on the role of Wnts and the dickkopf family of Wnt inhibitors. J Hepatocell Carcinoma. 2014; 1:1–7.
PubMed
PubMed Central
Google Scholar
Patil MA, Chua MS, Pan KH, Lin R, Lih CJ, Cheung ST, Ho C, Li R, Fan ST, Cohen SN, Chen X, So S. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma. Oncogene. 2005; 24(23):3737–47.
Article
CAS
PubMed
Google Scholar
Yu B, Yang X, Xu Y, Yao G, Shu H, Lin B, Hood L, Wang H, Yang S, Gu J, Fan J, Qin W. Elevated expression of DKK1 is associated with cytoplasmic/nuclear beta-catenin accumulation and poor prognosis in hepatocellular carcinomas. J Hepatol. 2009; 50(5):948–57.
Article
CAS
PubMed
Google Scholar
de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA. 1998; 95(15):8847–51.
Article
CAS
PubMed
Google Scholar
Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Bioulac-Sage P, Zucman-Rossi J. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001; 120(7):1763–73.
Article
CAS
PubMed
Google Scholar
Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, Clement B, Balabaud C, Chevet E, Laurent A, Couchy G, Letouze E, Calvo F, Zucman-Rossi J. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012; 44(6):694–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol. 1999; 155(3):703–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000; 24(3):245–50.
Article
CAS
PubMed
Google Scholar
Lachenmayer A, Alsinet C, Savic R, Cabellos L, Toffanin S, Hoshida Y, Villanueva A, Minguez B, Newell P, Tsai HW, Barretina J, Thung S, Ward SC, Bruix J, Mazzaferro V, Schwartz M, Friedman SL, Llovet JM. Wnt-pathway activation in two molecular classes of hepatocellular carcinoma and experimental modulation by sorafenib. Clin Cancer Res. 2012; 18(18):4997–5007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kofahl B, Wolf J. Mathematical modelling of Wnt/beta-catenin signalling. Biochem Soc Trans. 2010; 38(5):1281–5.
Article
CAS
PubMed
Google Scholar
Lloyd-Lewis B, Fletcher AG, Dale TC, Byrne HM. Toward a quantitative understanding of the Wnt/beta-catenin pathway through simulation and experiment. Wiley Interdiscip Rev Syst Biol Med. 2013; 5(4):391–407.
Article
CAS
PubMed
Google Scholar
Kühl M, Kracher B, Gross A, Kestler HA. Mathematical Models of Wnt signaling pathways In: Hoppler SP, Moon RT, editors. Wnt Signaling in Development and Disease: Molecular Mechanisms and Biological Functions. New Jersey: Wiley-Blackwell: 2014. p. 153–60.
Google Scholar
Jensen PB, Pedersen L, Krishna S, Jensen MH. A Wnt oscillator model for somitogenesis. Biophys J. 2010; 98(6):943–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kogan Y, Halevi-Tobias KE, Hochman G, Baczmanska AK, Leyns L, Agur Z. A new validated mathematical model of the Wnt signalling pathway predicts effective combinational therapy by sFRP and Dkk. Biochem J. 2012; 444(1):115–25.
Article
CAS
PubMed
Google Scholar
Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol. 2015; 11(3):1004106.
Article
Google Scholar
Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 2003; 1(1):10.
Article
Google Scholar
Mirams GR, Byrne HM, King JR. A multiple timescale analysis of a mathematical model of the Wnt/beta-catenin signalling pathway. J Math Biol. 2010; 60(1):131–60.
Article
PubMed
Google Scholar
Schmitz Y, Rateitschak K, Wolkenhauer O. Analysing the impact of nucleo-cytoplasmic shuttling of β-catenin and its antagonists APC, Axin and GSK3 on Wnt/ β-catenin signalling. Cell Signal. 2013; 25(11):2210–21.
Article
CAS
PubMed
Google Scholar
Benary U, Kofahl B, Hecht A, Wolf J. Modeling Wnt/beta-Catenin Target Gene Expression in APC and Wnt Gradients Under Wild Type and Mutant Conditions. Front Physiol. 2013; 4:21.
Article
PubMed
PubMed Central
Google Scholar
van Leeuwen IM, Byrne HM, Jensen OE, King JR. Elucidating the interactions between the adhesive and transcriptional functions of beta-catenin in normal and cancerous cells. J Theor Biol. 2007; 247(1):77–102.
Article
CAS
PubMed
Google Scholar
Kruger R, Heinrich R. Model reduction and analysis of robustness for the Wnt/beta-catenin signal transduction pathway. Genome Inform. 2004; 15(1):138–48.
PubMed
Google Scholar
MacLean AL, Rosen Z, Byrne HM, Harrington HA. Parameter-free methods distinguish Wnt pathway models and guide design of experiments. Proc Natl Acad Sci USA. 2015; 112(9):2652–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wawra C, Kuhl M, Kestler HA. Extended analyses of the Wnt/beta-catenin pathway: robustness and oscillatory behaviour. FEBS Lett. 2007; 581(21):4043–8.
Article
CAS
PubMed
Google Scholar
Benary U, Kofahl B, Hecht A, Wolf J. Mathematical modelling suggests a differential impact of β-transducin repeat-containing protein paralogues on Wnt/ β-catenin signalling dynamics. FEBS J. 2015; 282(6):1080–96.
Article
CAS
PubMed
Google Scholar
Pedersen L, Jensen MH, Krishna S. Dickkopf1–a new player in modelling the Wnt pathway. PLoS ONE. 2011; 6(10):25550.
Article
Google Scholar
Ramis-Conde I, Drasdo D, Anderson AR, Chaplain MA. Modeling the influence of the E-cadherin-beta-catenin pathway in cancer cell invasion: a multiscale approach. Biophys J. 2008; 95(1):155–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christoffels VM, Sassi H, Ruijter JM, Moorman AF, Grange T, Lamers WH. A mechanistic model for the development and maintenance of portocentral gradients in gene expression in the liver. Hepatology. 1999; 29(4):1180–92.
Article
CAS
PubMed
Google Scholar
Schulthess P, Loffler A, Vetter S, Kreft S, Schwarz M, Braeuning A, Bluthgen N. Signal integration by the CYP1A1 promoter – a quantitative study. Nucleic Acids Res. 2015; 43(11):5318–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirams GR, Fletcher AG, Maini PK, Byrne HM. A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt. J Theor Biol. 2012; 312:143–56.
Article
PubMed
Google Scholar
Fletcher AG, Breward CJ, Jonathan Chapman S. Mathematical modeling of monoclonal conversion in the colonic crypt. J Theor Biol. 2012; 300:118–33.
Article
PubMed
Google Scholar
Fletcher AG, Murray PJ, Maini PK. Multiscale modelling of intestinal crypt organization and carcinogenesis. Math Models Methods Appl Sci. 2015; 25:2563.
Article
CAS
Google Scholar
Murray PJ, Kang JW, Mirams GR, Shin SY, Byrne HM, Maini PK, Cho KH. Modelling spatially regulated beta-catenin dynamics and invasion in intestinal crypts. Biophys J. 2010; 99(3):716–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibb N, Lavery DL, Hoppler S. sfrp1 promotes cardiomyocyte differentiation in Xenopus via negative-feedback regulation of Wnt signalling. Development. 2013; 140(7):1537–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buske P, Galle J, Barker N, Aust G, Clevers H, Loeffler M. A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput Biol. 2011; 7(1):1001045.
Article
Google Scholar
Kay SK, Harrington HA, Shepherd S, Brennan K, Dale T, Osborne JM, Gavaghan DJ, Byrne HM. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt. PLoS Comput Biol. 2017; 13(2):1005400.
Article
Google Scholar
Zhang L, Lander AD, Nie Q. A reaction-diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts. BMC Syst Biol. 2012; 6:93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agur Z, Kirnasovsky OU, Vasserman G, Tencer-Hershkowicz L, Kogan Y, Harrison H, Lamb R, Clarke RB. Dickkopf1 regulates fate decision and drives breast cancer stem cells to differentiation: an experimentally supported mathematical model. PLoS ONE. 2011; 6(9):24225.
Article
Google Scholar
Shin SY, Rath O, Zebisch A, Choo SM, Kolch W, Cho KH. Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition. Cancer Res. 2010; 70(17):6715–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Rath O, Kolch W, Cho KH. A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene. 2007; 26(31):4571–9.
Article
CAS
PubMed
Google Scholar
Goldbeter A, Pourquie O. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J Theor Biol. 2008; 252(3):574–85.
Article
CAS
PubMed
Google Scholar
Goentoro L, Kirschner MW. Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell. 2009; 36(5):872–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuntz E, Kuntz HD. Hepatology: Textbook and Atlas. Berlin/Heidelberg: Springer; 2008.
Google Scholar
Plettenberg S, Weiss EC, Lemor R, Wehner F. Subunits alpha, beta and gamma of the epithelial Na+ channel (ENaC) are functionally related to the hypertonicity-induced cation channel (HICC) in rat hepatocytes. Pflugers Arch. 2008; 455(6):1089–95.
Article
CAS
PubMed
Google Scholar
Moran U, Phillips R, Milo R. SnapShot: Key Numbers in Biology. Cell. 2010; 141(7):1262–12621.
Article
PubMed
Google Scholar
Schwanhäusser B, Busse D, i N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global quantification of mammalian gene expression control. Nature. 2011; 473(7347):337–42.
Article
PubMed
Google Scholar
Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H. Systems Biology in Practice: Concepts, Implementation and Application. New Jersey: Wiley-VCH; 2005.
Book
Google Scholar
Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol. 2003; 15(2):221–31.
Article
CAS
PubMed
Google Scholar
Kholodenko BN, Hancock JF, Kolch W. Signalling ballet in space and time. Nat Rev Mol Cell Biol. 2010; 11(6):414–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klipp E, Liebermeister W. Mathematical modeling of intracellular signaling pathways. BMC Neurosci. 2006; 7 Suppl 1:10.
Article
Google Scholar
Tan CW, Gardiner BS, Hirokawa Y, Layton MJ, Smith DW, Burgess AW. Wnt signalling pathway parameters for mammalian cells. PLoS ONE. 2012; 7(2):31882.
Article
Google Scholar
Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature. 2015; 524(7564):180–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002; 111(2):241–50.
Article
CAS
PubMed
Google Scholar
Aulehla A, Herrmann BG. Segmentation in vertebrates: clock and gradient finally joined. Genes Dev. 2004; 18(17):2060–7.
Article
CAS
PubMed
Google Scholar
Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell. 2013; 154(2):274–84.
Article
CAS
PubMed
Google Scholar
Zecca M, Basler K, Struhl G. Direct and long-range action of a wingless morphogen gradient. Cell. 1996; 87(5):833–44.
Article
CAS
PubMed
Google Scholar
Strigini M, Cohen SM. Wingless gradient formation in the Drosophila wing. Curr Biol. 2000; 10(6):293–300.
Article
CAS
PubMed
Google Scholar
Aulehla A, Wehrle C, Brand-Saberi B, Kemler R, Gossler A, Kanzler B, Herrmann BG. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell. 2003; 4(3):395–406.
Article
CAS
PubMed
Google Scholar
Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006; 127(3):469–80.
Article
CAS
PubMed
Google Scholar
Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008; 8(5):387–98.
Article
CAS
PubMed
Google Scholar
Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003; 1653(1):1–24.
CAS
PubMed
Google Scholar
Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets. 2008; 9(11):1013–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bahar Halpern K, Itzkovitz S. Single molecule approaches for quantifying transcription and degradation rates in intact mammalian tissues. Methods. 2016; 98:134–42.
Article
CAS
PubMed
Google Scholar
Turing AM. The Chemical Basis of Morphogenesis. Philos Trans R Soc B. 1952; 237(641):37–72.
Article
Google Scholar
Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science. 2010; 329(5999):1616–20.
Article
CAS
PubMed
Google Scholar