Levine M. Transcriptional enhancers in animal development. Curr Biol. 2010; 20:R754–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ludwig MZ, Bergman CM, Patel NH, Kreitman M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature. 2000; 403:564–7.
Article
CAS
PubMed
Google Scholar
Andolfatto P. Adaptive evolution of non-coding DNA in Drosophila. Nature. 2005; 437:1149–53.
Article
CAS
PubMed
Google Scholar
Ward LD, Kellis M. Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science. 2012; 337:1675–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009; 106:9362–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease associated variation in regulatory DNA. Science. 2012; 337:1190–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swanson CL, Evans NC, Barolo S. Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev Cell. 2010; 18:359–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrioli LPM, Vasisht V, Theodosopoulou E, Oberstein A, Small S. Anterior repression of a Drosophila stripe enhancer requires three position-specific mechanisms. Development. 2002; 129:4931–40.
CAS
PubMed
Google Scholar
Vincent BJ, Estrada J, Depace AH. The appeasement of Doug a synthetic approach to enhancer biology. Integr Biol. 2016; 8:475–84.
Article
Google Scholar
Johnson LA, Zhao Y, Golden K, Barolo S. Reverse-engineering a transcriptional enhancer: a case study in Drosophila. Tissue Eng Part A. 2008; 14:1549–59.
Article
PubMed
PubMed Central
Google Scholar
Goto T, MacDonald P, Maniatis T. Early and late periodic patterns of even-skipped, expression are controlled by distinct regulatory elements that respond to different spatial cues. Cell. 1989; 57:413–22.
Article
CAS
PubMed
Google Scholar
Small S, Blair A, Levine M. Regulation of even-skipped, stripe 2 in the Drosophila embryo. EMBO J. 1992; 11:4047–57.
CAS
PubMed
PubMed Central
Google Scholar
Small S, Kraut R, Hoey T, Warrior R, Levine M. Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev. 1991; 5:827–39.
Article
CAS
PubMed
Google Scholar
Stanojevic D, Small S, Levine M. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science. 1991; 254:1385–7.
Article
CAS
PubMed
Google Scholar
Frasch M, Levine M. Complementary patterns of even-skipped, and fushi-tarazu, expression involve their differential regulation by a common set of segmentation genes in Drosophila. Genes Dev. 1987; 1:981–95.
Article
CAS
PubMed
Google Scholar
Surkova S, Myasnikova E, Janssens H, Kozlov KN, Samsonova A, Reinitz J, et al. Pipeline for acquisition of quantitative data on segmentation gene expression from confocal images. Fly. 2008; 2:58–66.
Article
PubMed
PubMed Central
Google Scholar
Surkova S, Kosman D, Kozlov K, Manu, Myasnikova E, Samsonova A, et al. Characterization of the Drosophila, segment determination morphome. Dev Biol. 2008; 313(2):844–62.
Article
CAS
PubMed
Google Scholar
Luengo-Hendriks CL, Keranen SVE, Fowlkes CC, Simirenko L, Weber GH, Henriquez C, et al. 3D morphology and gene expression in the Drosophila blastoderm at cellular resolution I: data acquisition pipeline. Genome Biol. 2006; 7:R123.
Article
PubMed
PubMed Central
Google Scholar
Fowlkes CC, Hendricks CLL, Keränen SVE, Rübel GHWO, Huang M, Chatoor S, et al. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell. 2008; 133:364–74.
Article
CAS
PubMed
Google Scholar
Janssens H, Hou S, Jaeger J, Kim AR, Myasnikova E, Sharp D, et al. Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat Genet. 2006; 38:1159–65.
Article
CAS
PubMed
Google Scholar
Segal E, Raveh-Sadka T, Schroeder M, Unnerstall U, Gaul U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature. 2008; 451:535–40.
Article
CAS
PubMed
Google Scholar
Samee MAH, Sinha S. Quantitative modeling of a gene’s expression from its intergenic sequence. PLoS Comput Biol. 2014; 10:1–21.
Article
Google Scholar
Kazemian M, Blatti C, Richards A, McCutchan M, Wakabayashi-Ito N, Hammonds AS, et al. Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials. PLoS Biol. 2010; 8:e1000456.
Article
PubMed
PubMed Central
Google Scholar
He X, Samee MAH, Blatti C, Sinha S. Thermodynamics-based models of transcriptional regulation by enhancers: the roles of synergistic activation, cooperative binding and short-range repression. PLoS Comput Biol. 2010; 6:e1000935.
Article
PubMed
PubMed Central
Google Scholar
Kim AR, Martinez C, Ramos AF, Ludwig MZ, Ogawa N, et al. Rearrangements of 2.5 kilobases of noncoding DNA from the Drosophila even-skipped locus define predictive rules of genomic cis-regulatory logic. PLoS Genet. 2013; 9:e1003243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez C, Kim AR, Rest JS, Ludwig M, Kreitman M, White K, et al. Ancestral resurrection of the Drosophila S2E enhancer reveals accessible evolutionary paths through compensatory change. Mol Biol Evol. 2014; 31:903–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sayal R, Dresch JM, Pushel I, Taylor BR, Arnosti D. Quantitative perturbation-based analysis of gene expression predicts enhancer activity in early Drosophila embryo. eLife. 2016; 5:e08445.
Article
PubMed
PubMed Central
Google Scholar
Gray S, Szymanski P, Levine M. Short-range repression permits multiple enhancers to function autonomously within a complex promoter. Genes Dev. 1994; 8:1829–38.
Article
CAS
PubMed
Google Scholar
Gray S, Levine M. Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev. 1996; 10:700–10.
Article
CAS
PubMed
Google Scholar
Fakhouri WD, Ay A, Sayal R, Dresch J, Dayringer E, Arnosti DN. Deciphering a transcriptional regulatory code: modeling short-range repression in the Drosophila embryo. Mol Syst Biol. 2010; 6:34.
Article
Google Scholar
Ludwig MZ, Patel NH, Kreitman M. Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change. Development. 1998; 125:949–58.
CAS
PubMed
Google Scholar
Ludwig MZ, Palsson A, Alekseeva E, Bergman CM, Nathan J, Kreitman M. Functional Evolution of a cis-Regulatory Module. PLoS Biol. 2005; 3(4):e93.
Article
PubMed
PubMed Central
Google Scholar
Hare EE, Peterson BK, Iyer VN, Meier R, Eisen MB. Sepsid even-skipped enhancers are functionally conserved in Drosopila despite lack of sequence conservation. PLoS Genet. 2008; 4:e1000106.
Article
PubMed
PubMed Central
Google Scholar
Hare EE, Peterson BK, Eisen MB. A careful look at binding site reorganization in the even-skipped enhancers of Drosophila and Sepsids. PLoS Genet. 2008; 4(11):e1000268.
Article
PubMed
PubMed Central
Google Scholar
Martinez CA, Barr KA, Kim AR, Reinitz J. A synthetic biology approach to the development of transcriptional regulatory models and custom enhancer design. Methods. 2013; 62:91–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groth AC, Fish M, Nusse R, Calos MP. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. 2004; 166:1775–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sackerson C, Fujioka M, Goto T. The even-skipped locus is contained in a 16-kb chromatin domain. Dev Biol. 1999; 211:39–52.
Article
CAS
PubMed
Google Scholar
Janssens H, Kosman D, Vanario-Alonso CE, Jaeger J, Samsonova M, Reinitz J. A high-throughput method for quantifying gene expression data from early Drosophila embryos. Dev Genes Evol. 2005; 215:374–81.
Article
CAS
PubMed
Google Scholar
Pisarev A, Poustelnikova E, Samsonova M, Reinitz J. FlyEx, the quantitative atlas on segmentation gene expression at cellular resolution. Nucleic Acids Res. 2008; 37:D560–6.
Article
PubMed
PubMed Central
Google Scholar
Small S, Arnosti DN, Levine M. Spacing ensures autonomous expression of different stripe enhancers in the even-skipped promoter. Development. 1993; 119:767–72.
CAS
Google Scholar
Hertz GZ, Stormo GD. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics. 1999; 15:563–77.
Article
CAS
PubMed
Google Scholar
Tamura K, Subramanian S, Kumar S. Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mole Biol Evol. 2004; 21:36–44.
Article
CAS
Google Scholar
Han K, Levine M, Manley JL. Synergistic activation and repression of transcription by Drosophila homeobox proteins. Cell. 1989; 56:573–83.
Article
CAS
PubMed
Google Scholar
Zhu LJ, Christensen RG, Kazemian M, Hull CJ, Enuameh MS, Basciotta MD, et al. FlyFactorSurvey: a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system. Nucleic Acids Res. 2011; 39:D111–7.
Article
CAS
PubMed
Google Scholar
Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, et al. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 2002; 3(12):RESEARCH0088.
Article
PubMed
PubMed Central
Google Scholar
Chen H, Zhe X, Mei C, Yu D, Small S. A system of repressor gradients spatially organizes the boundaries of bicoid-dependent target genes. Cell. 2012; 2:618–29.
Article
Google Scholar
Struffi P, Corado M, Kaplan L, Yu D, Rushlow C, Small S. Combinatorial activation and concentration-dependent repression of the Drosophila
even skipped stripe 3+7 enhancer. Development. 2011; 138:4291–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsurumi A, Xia F, Li J, Larson K, LaFrance R, Li WX. STAT is an essential activator of the zygotic genome in the early Drosophila embryo. PLoS Genet. 2011; 72:e1002086.
Article
Google Scholar
Hanes SD, Riddihough G, Ish-Horowicz D, Brent R. Specific DNA recognition and intersite spacing are critical for action of the bicoid morphogen. Mol Cellular Biol. 1994; 14:3364–75.
Article
CAS
Google Scholar
Satija R, Bradley RK. The TAGteam motif facilitates binding of 21 sequence-specific transcription factors in the Drosophila embryo. Genome Res. 2012; 22:656–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulz KN, Bondra ER, Moshe A, Lieb JEVJD, Kaplan T, McKay DJ, et al. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res. 2015; 25:1715–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu D, Zhao C, Ma J. Enhancer sequences influence the role of the amino-terminal domain of Bicoid in transcription. Mol Cellular Biol. 2003; 23:4439–48.
Article
CAS
Google Scholar
Burz DS, Rivera-Pomar R, Jaeckle H, Hanes SD. Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. EMBO J. 1998; 17:5998–6009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maricque BB, Dougherty JD, Cohen BA. A genome-integrated massively parallel reporter assay reveals DNA sequence determinants of cis- regulatory activity in neural cells. Nucleic Acids Res. 2017; 45:e16.
PubMed
Google Scholar
Erceg J, Sauders TE, Girardot C, Devos DP, Hufnagel L, Furlong EEM. Subtle changes in motif positioning cause tissue-specific effects on robustness of an enhancer’s activity. PLoS Genet. 2014; 10:e1004060.
Article
PubMed
PubMed Central
Google Scholar
Kulkarni MM, Arnosti DN. cis-Regulatory logic of short-range transcriptional repression in Drosophila melanogaster. Mol Cellular Biol. 2005; 25:3411–20.
Article
CAS
Google Scholar
Smith RP, Taher L, Patwardhan RP, Kim MJ, Inoue F, Shendure J, et al. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat Genet. 2013; 45:1021–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Innocentini GCF, Hornos JEM. Modeling stochastic gene expression under repression. J Math Biol. 2007; 55:413–31.
Article
CAS
PubMed
Google Scholar
Prata GN, Hornos JE, Ramos AF. Stochastic model for gene transcription on Drosophila melanogaster embryos. Phys Rev E. 2016; 93:022403.
Article
PubMed
Google Scholar
He BZ, Holloway AK, Maerkl SJ, Kreitman M. Does positive selection drive transcription factor binding site turnover? A test with Drosophila
cis-regulatory modules. PLoS Genet. 2011; 7:e1002053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibson D. One-step enzymatic assembly of DNA molecules up to several hundred kilobases in size. Protocol Exchange. 2009. doi:10.1038/nprot.2009.77.
Ramos AF, Innocentini GCP, Forger FM, Hornos JEM. Symmetry in biology: from genetic code to stochastic gene regulation. IET Syst Biol. 2010; 4:311–29.
Article
CAS
PubMed
Google Scholar