Danese S, Fiocchi C. Ulcerative colitis. New England J Med. 2011; 365(18):1713–25.
Article
CAS
Google Scholar
Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012; 380(9853):1590–605.
Article
PubMed
Google Scholar
Colombel JF, Mahadevan U. Inflammatory bowel disease 2017: Innovations and changing paradigms. Gastroenterology. 2017; 152(2):309–12.
Article
PubMed
Google Scholar
Bernstein CN. Treatment of IBD: where we are and where we are going. Am J Gastroenterol. 2015; 110(1):114.
Article
PubMed
Google Scholar
Lewis RT, Maron DJ. Efficacy and complications of surgery for Crohn’s disease. Gastroenterol Hepatol. 2010; 6(9):587.
Google Scholar
Mehta F. Report: economic implications of inflammatory bowel disease and its management. Am J Manag Care. 2016; 22(3 Suppl):51–60.
Google Scholar
Hold GL, Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years?World J Gastroenterol: WJG. 2014; 20(5):1192.
Article
PubMed
PubMed Central
Google Scholar
Thompson JA, Oliveira RA, Xavier KB. Chemical conversations in the gut microbiota. Gut Microbes. 2016; 7(2):163–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016; 535(7610):75–84.
Article
CAS
PubMed
Google Scholar
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016; 22(5):1137.
Article
PubMed
PubMed Central
Google Scholar
Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015; 31(1):69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Theriot CM, Young VB. Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu Rev Microbiol. 2015; 69:445–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byrne C, Chambers E, Morrison D, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes. 2015; 39(9):1331–8.
Article
CAS
Google Scholar
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J lipid Res. 2013; 54(9):2325–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. In: Seminars in Immunopathology. vol. 37, No.1. Berlin Heidelberg: Springer: 2015. p. 47–55.
Google Scholar
Lu C, Zhao X, Lai MA, Lopez-Yglesias AH, Quarles EK, Lo C, Smith KD. Commensal E. coli induced colonization resistance against mucosal Salmonella infection. Am Assoc Immnol. 2016;:66–11.
Ahmed I, Roy BC, Khan SA, Septer S, Umar S. Microbiome, metabolome and inflammatory bowel disease. Microorganisms. 2016; 4(2):20.
Article
PubMed Central
Google Scholar
Øyri SF, Műzes G, Sipos F. Dysbiotic gut microbiome: A key element of Crohn’s disease. Comp Immunol Microbiol Infect Dis. 2015; 43:36–49.
Article
PubMed
Google Scholar
Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 2013; 7(7):1256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu H, Li YR. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med. 2012; 237(5):474–80.
Article
CAS
Google Scholar
Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, Grunberg S, Baldassano RN, Lewis JD, Li H, et al.Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology. 2014; 147(5):1055–63.
Article
PubMed
PubMed Central
Google Scholar
Hartman AL, Lough DM, Barupal DK, Fiehn O, Fishbein T, Zasloff M, Eisen JA. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc Natl Acad Sci. 2009; 106(40):17187–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, et al.Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015; 17(5):662–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S, Hudault S, Bridonneau C, Northen T, Bowen B, et al.Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio. 2015; 6(2):00300–15.
Article
Google Scholar
Baughn AD, Malamy MH. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature. 2004; 427(6973):441.
Article
CAS
PubMed
Google Scholar
Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, Torres TP, Byndloss AJ, Faber F, Gao Y, et al.Microbiota-activated ppar- γ signaling inhibits dysbiotic enterobacteriaceae expansion. Science. 2017; 357(6351):570–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Vos WM. Microbial biofilms and the human intestinal microbiome. npj Biofilms Microbiomes. 2015; 1:15005.
Article
PubMed
PubMed Central
Google Scholar
Macfarlane S, Bahrami B, Macfarlane GT. Mucosal biofilm communities in the human intestinal tract. Adv Appl Microbiol. 2011; 75:111–43.
Article
CAS
PubMed
Google Scholar
von Rosenvinge EC, O’May GA, Macfarlane S, Macfarlane GT, Shirtliff ME. Microbial biofilms and gastrointestinal diseases. Pathog Dis. 2013; 67(1):25–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenblum S, Turnbaugh PJ, Borenstein E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci. 2012; 109(2):594–9.
Article
CAS
PubMed
Google Scholar
Levy R, Borenstein E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc Natl Acad Sci. 2013; 110(31):12804–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henson MA, Hanly TJ. Dynamic flux balance analysis for synthetic microbial communities. IET Syst Biol. 2014; 8(5):214–29.
Article
PubMed
Google Scholar
Heinken A, Sahoo S, Fleming RM, Thiele I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut microbes. 2013; 4(1):28–40.
Article
PubMed
PubMed Central
Google Scholar
Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJ, Thiele I. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol. 2014; 196(18):3289–302.
Article
PubMed
PubMed Central
Google Scholar
Baumler DJ, Peplinski RG, Reed JL, Glasner JD, Perna NT. The evolution of metabolic networks of E. coli. BMC Syst Biol. 2011; 5(1):182.
Article
PubMed
PubMed Central
Google Scholar
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut microbes. 2012; 3(4):289–306.
Article
PubMed
PubMed Central
Google Scholar
Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013; 11(9):639.
Article
CAS
PubMed
Google Scholar
Dai ZL, Wu G, Zhu WY. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci. 2011; 16(1):1768–86.
Article
CAS
Google Scholar
Larocque M, Chénard T, Najmanovich R. A curated C. difficile strain 630 metabolic network: prediction of essential targets and inhibitors. BMC Syst Biol. 2014; 8(1):117.
Article
PubMed
PubMed Central
Google Scholar
Horn H, Lackner S. Modeling of biofilm systems: a review. In: Productive Biofilms. Springer International Publishing: 2014. p. 53–76.
Henson MA, Phalak P. Byproduct cross feeding and community stability in an in silico biofilm model of the gut microbiome. Processes. 2017; 5(1):13.
Article
Google Scholar
Khan MT, van Dijl JM, Harmsen HJ. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PloS ONE. 2014; 9(5):96097.
Article
Google Scholar
Stewart PS. Diffusion in biofilms. J Bacteriol. 2003; 185(5):1485–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart PS. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotech Bioeng. 1998; 59(3):261–72.
Article
CAS
Google Scholar
Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B. Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation. Metab Eng. 2010; 12(2):150–60.
Article
CAS
PubMed
Google Scholar
Carlson R, Srienc F. Fundamental Escherichia coli biochemical pathways for biomass and energy production: identification of reactions. Biotech Bioeng. 2004; 85(1):1–19.
Article
CAS
Google Scholar
Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011; 9(4):279–90.
Article
CAS
PubMed
Google Scholar
Phalak P, Chen J, Carlson RP, Henson MA. Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species. BMC Syst Biol. 2016; 10(1):90.
Article
PubMed
PubMed Central
Google Scholar
Gomez JA, Hoffner K, Barton PI. DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis. BMC Bioinforma. 2014; 15:409.
Article
Google Scholar
Khan MT, Duncan SH, Stams AJ, Van Dijl JM, Flint HJ, Harmsen HJ. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic–anoxic interphases. ISME J. 2012; 6(8):1578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan MT, Browne WR, van Dijl JM, Harmsen HJ. How can Faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer? 2012:1433–1440.
Kuroki F, Iida M, Tominaga M, Matsumoto T, Hirakawa K, Sugiyama S, Fujishima M. Multiple vitamin status in Crohn’s disease. Dig Dis Sci. 1993; 38(9):1614–8.
Article
CAS
PubMed
Google Scholar
Dixon LJ, Kabi A, Nickerson KP, McDonald C. Combinatorial effects of diet and genetics on inflammatory bowel disease pathogenesis. Inflamm Bowel Dis. 2015; 21(4):912.
Article
PubMed
PubMed Central
Google Scholar
Haskey N, Gibson DL. An examination of diet for the maintenance of remission in inflammatory bowel disease. Nutrients. 2017; 9(3):259.
Article
PubMed Central
Google Scholar
Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A. Multistability in the lactose utilization network of escherichia coli. Nature. 2004; 427(6976):737–40.
Article
CAS
PubMed
Google Scholar
Card T, Logan R, Rodrigues L, Wheeler J. Antibiotic use and the development of Crohn’s disease. Gut. 2004; 53(2):246–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, et al.The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014; 15(3):382–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Hoek MJ, Merks RM. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst Biol. 2017; 11(1):56.
Article
Google Scholar
Kettle H, Louis P, Holtrop G, Duncan SH, Flint HJ. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ Microbiol. 2015; 17(5):1615–30.
Article
CAS
PubMed
Google Scholar
Muñoz-Tamayo R, Laroche B, Walter É, Doré J, Leclerc M. Mathematical modelling of carbohydrate degradation by human colonic microbiota. J Theor Biol. 2010; 266(1):189–201.
Article
PubMed
Google Scholar
Heinken A, Thiele I. Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes. 2015; 6(2):120–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji B, Nielsen J. From next-generation sequencing to systematic modeling of the gut microbiome. Front Genet. 2015; 6.
Shoaie S, Nielsen J. Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front Genet. 2014; 5.
Thiele I, Heinken A, Fleming RM. A systems biology approach to studying the role of microbes in human health. Curr Opin Biotechnol. 2013; 24(1):4–12.
Article
CAS
PubMed
Google Scholar
Donelli G, Vuotto C, Cardines R, Mastrantonio P. Biofilm-growing intestinal anaerobic bacteria. FEMS Immunol Med Microbiol. 2012; 65(2):318–25.
Article
CAS
PubMed
Google Scholar
Macfarlane S, Dillon J. Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol. 2007; 102(5):1187–96.
Article
CAS
PubMed
Google Scholar
Ouwerkerk JP, de Vos WM, Belzer C. Glycobiome: bacteria and mucus at the epithelial interface. Best Practice Res Clinical Gastroenterol. 2013; 27(1):25–38.
Article
CAS
Google Scholar