Cumming BM, Steyn AJC. Metabolic plasticity of central carbon metabolism protects mycobacteria. Proc Natl Acad Sci U S A. 2015;112:13135–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee W, VanderVen BC, Fahey RJ, Russell DG. Intracellular mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem. 2013;288:6788–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakoulas G, Okumura CY, Thienphrapa W, Olson J, Nonejuie P, Dam Q, et al. Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. J Mol Med. 2014;92:139–49.
Article
CAS
PubMed
Google Scholar
Russell DG, Barry CE, Flynn JL. Tuberculosis: what we don’t know can, and does, hurt us. Science. 2010;328:852–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Sambandan D, Halder R, Wang J, Batt SM, Weinrick B, et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci U S A. 2013;110:E2510–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996;64:2062–9.
CAS
PubMed
PubMed Central
Google Scholar
Wayne LG, Sohaskey CD. Nonreplicating persistence of mycobacterium tuberculosis 1. Ann Rev Microbiol. 2001;55:139–63.
Article
CAS
Google Scholar
Mitchison DA, Coates ARM. Predictive in vitro models of the sterilizing activity of anti-tuberculosis drugs. Curr Pharm Des. 2004;10:3285–95.
Article
CAS
PubMed
Google Scholar
Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis. 2003;7:6–21.
CAS
PubMed
Google Scholar
Prosser GA, de Carvalho LPS. Metabolomics reveal d-alanine:d-alanine ligase as the target of d-Cycloserine in mycobacterium tuberculosis. ACS Med Chem Lett. 2013;4:1233–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pethe K, Sequeira PC, Agarwalla S, Rhee K, Kuhen K, Phong WY, et al. A chemical genetic screen in mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat Commun. 2010;1:57.
Article
PubMed
Google Scholar
O’Brien EJ, Monk JM, Palsson BO. Using genome-scale models to predict biological capabilities. Cell. 2015;161:971–87.
Article
PubMed
PubMed Central
Google Scholar
Ma S, Minch KJ, Rustad TR, Hobbs S, Zhou S-L, Sherman DR, et al. Integrated modeling of gene regulatory and metabolic networks in mycobacterium tuberculosis. PLoS Comput Biol. 2015;11:e1004543.
Article
PubMed
PubMed Central
Google Scholar
Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N. Insight into human alveolar macrophage and M tuberculosis interactions via metabolic reconstructions. Mol Syst Biol. 2010;6:422.
Article
PubMed
PubMed Central
Google Scholar
Monk J, Nogales J, Palsson BO. Optimizing genome-scale network reconstructions. Nat Biotechnol. 2014;32:447–52.
Article
CAS
PubMed
Google Scholar
Jamshidi N, Palsson BØ. Investigating the metabolic capabilities of mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol. 2007;1:26.
Article
PubMed
PubMed Central
Google Scholar
Beste DJV, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, et al. GSMN-TB: a web-based genome-scale network model of mycobacterium tuberculosis metabolism. Genome Biol. 2007;8:R89.
Article
PubMed
PubMed Central
Google Scholar
Rienksma RA. Suarez-Diez M, spina L, Schaap PJ, martins dos Santos VAP. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin. Immunol. 2014;26:610–22.
CAS
Google Scholar
Garay CD, Dreyfuss JM, Galagan JE. Metabolic modeling predicts metabolite changes in mycobacterium tuberculosis. BMC Syst Biol. 2015;9:57.
Article
PubMed
PubMed Central
Google Scholar
Vashisht R, Bhat AG, Kushwaha S, Bhardwaj A, OSDD Consortium, Brahmachari SK. Systems level mapping of metabolic complexity in mycobacterium tuberculosis to identify high-value drug targets. J Transl Med. 2014;12:263.
Article
PubMed
PubMed Central
Google Scholar
Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44:D471–80.
Article
CAS
PubMed
Google Scholar
King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016;44:D515–22.
Article
CAS
PubMed
Google Scholar
Hatzios SK, Bertozzi CR. The regulation of sulfur metabolism in mycobacterium tuberculosis. PLoS Pathog. 2011;7:e1002036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tullius MV, Harmston CA, Owens CP, Chim N, Morse RP, McMath LM, et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A. 2011;108:5051–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Layre E, Lee HJ, Young DC, Martinot AJ, Buter J, Minnaard AJ, et al. Molecular profiling of mycobacterium tuberculosis identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proc Natl Acad Sci U S A. 2014;111:2978–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richard-Greenblatt M, Bach H, Adamson J, Peña-Diaz S, Li W, Steyn AJC, et al. Regulation of Ergothioneine biosynthesis and its effect on mycobacterium tuberculosis growth and infectivity. J Biol Chem. 2015;290:23064–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saini V, Cumming BM, Guidry L, Lamprecht DA, Adamson JH, Reddy VP, et al. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of mycobacterium tuberculosis. Cell Rep. 2016;14:572–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nambu S, Matsui T, Goulding CW, Takahashi S, Ikeda-Saito M. A new way to degrade heme: the mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J Biol Chem. 2013;288:10101–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011;7:e1002251.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeJesus MA, Gerrick ER, Xu W, Park SW, Long JE, Boutte CC, et al. Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. MBio. 2017;8. Available from: https://doi.org/10.1128/mBio.02133-16
Palsson BØ. Systems Biology: Constraint-based Reconstruction and Analysis. Cambridge: Cambridge University Press; 2015.
Rhee KY, de Carvalho LPS, Bryk R, Ehrt S, Marrero J, Park SW, et al. Central carbon metabolism in mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol. 2011;19:307–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003;5:264–76.
Article
CAS
PubMed
Google Scholar
Megchelenbrink W, Huynen M, Marchiori E. optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks. PLoS One. 2014;9:e86587.
Article
PubMed
PubMed Central
Google Scholar
Gouzy A, Larrouy-Maumus G, Wu T-D, Peixoto A, Levillain F, Lugo-Villarino G, et al. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nat Chem Biol. 2013;9:674–6.
Article
CAS
PubMed
Google Scholar
Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, Wallach JB, et al. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection. PLoS Pathog. 2014;10:e1003928.
Article
PubMed
PubMed Central
Google Scholar
Gouzy A, Poquet Y, Neyrolles O. Nitrogen metabolism in mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol. 2014;12:729–37.
Article
PubMed
Google Scholar
Beste DJV, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL, et al. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular mycobacterium tuberculosis. Chem Biol. 2013;20:1012–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011;7:e1002093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muñoz-Elías EJ, McKinney JD. Carbon metabolism of intracellular bacteria. Cell Microbiol. 2006;8:10–22.
Article
PubMed
Google Scholar
Eoh H, Rhee KY. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2013;110:6554–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eoh H, Rhee KY. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci U S A. 2014;111:4976–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-[beta]-D-arabinose biosynthetic and utilization pathway genes. Nat Genet. 2013;45:1190–7.
Article
CAS
PubMed
Google Scholar
Desjardins CA, Cohen KA, Munsamy V, Abeel T, Maharaj K, Walker BJ, et al. Genomic and functional analyses of mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nat Genet. 2016;48:544–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Carvalho LPS, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY. Metabolomics of mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol. 2010;17:1122–31.
Article
CAS
PubMed
Google Scholar
Zimmermann M, Kogadeeva M, Gengenbacher M, McEwen G, Mollenkopf H-J, Zamboni N, et al. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. mSystems. 2017;2. Available from: https://doi.org/10.1128/mSystems.00057-17.
Xu W, DeJesus MA, Rücker N, Engelhart CA, Wright MG, Healy C, et al. Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2017;61. Available from: https://doi.org/10.1128/AAC.01334-17.
Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011. Mol Syst Biol. 2011;7:535.
Article
PubMed
PubMed Central
Google Scholar
Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017;35:904–8.
Article
CAS
PubMed
Google Scholar
Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol. 2013;7:74.
Article
PubMed
PubMed Central
Google Scholar
Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, et al. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in mycobacterium tuberculosis. J Biol Chem. 2013;288:23447–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vilchèze C, Av-Gay Y, Attarian R, Liu Z, Hazbón MH, Colangeli R, et al. Mycothiol biosynthesis is essential for ethionamide susceptibility in mycobacterium tuberculosis. Mol Microbiol. 2008;69:1316–29.
Article
PubMed
PubMed Central
Google Scholar
King ZA, Dräger A, Ebrahim A, Sonnenschein N, Lewis NE, Palsson BO. Escher: a web application for building, sharing, and embedding data-rich visualizations of biological pathways. PLoS Comput Biol. 2015;11:e1004321.
Article
PubMed
PubMed Central
Google Scholar
Morita YS, Sena CBC, Waller RF, Kurokawa K, Sernee MF, Nakatani F, et al. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem. 2006;281:25143–55.
Article
CAS
PubMed
Google Scholar
Cai L, Zhao X, Jiang T, Qiu J, Owusu L, Ma Y, et al. Prokaryotic expression, identification and bioinformatics analysis of the mycobacterium tuberculosis Rv3807c gene encoding the putative enzyme committed to Decaprenylphosphoryl-d-arabinose synthesis. Indian J Microbiol. 2014;54:46–51.
Article
CAS
PubMed
Google Scholar
Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, et al. Interpreting expression data with metabolic flux models: predicting mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol. 2009;5:e1000489.
Article
PubMed
PubMed Central
Google Scholar
Kalapanulak S. High quality genome-scale metabolic network reconstruction of mycobacterium tuberculosis and comparison with human metabolic network: application for drug …. era.lib.ed.ac.uk; 2009; Available from: https://www.era.lib.ed.ac.uk/handle/1842/3925.
Google Scholar
Fang X, Wallqvist A, Reifman J. Development and analysis of an in vivo-compatible metabolic network of mycobacterium tuberculosis. BMC Syst Biol. 2010;4:160.
Article
PubMed
PubMed Central
Google Scholar
Chindelevitch L, Stanley S, Hung D, Regev A, Berger B. MetaMerge: scaling up genome-scale metabolic reconstructions with application to mycobacterium tuberculosis. Genome Biol. 2012;13:r6.
Article
PubMed
PubMed Central
Google Scholar
Lofthouse EK, Wheeler PR, Beste DJV, Khatri BL, Wu H, Mendum TA, et al. Systems-based approaches to probing metabolic variation within the mycobacterium tuberculosis complex. PLoS One. 2013;8:e75913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puniya BL, Kulshreshtha D, Mittal I, Mobeen A, Ramachandran S. Corrigendum: integration of metabolic modeling with gene co-expression reveals transcriptionally programmed reactions explaining robustness in mycobacterium tuberculosis. Sci Rep. 2016;6:24916.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR Jr, et al. Ethambutol resistance in mycobacterium tuberculosis: critical role of embB mutations. Antimicrob Agents Chemother. 1997;41:1677–81.
CAS
PubMed
PubMed Central
Google Scholar
Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in mycobacterium smegmatis. J Bacteriol Am Soc Microbiol. 1997;179:5046–55.
Article
CAS
Google Scholar
Neuhaus FC, Lynch JL. The enzymatic synthesis of d-ALANYL-d-alanine. 3. On the inhibition of d-ALANYL-d-alanine SYNTHETASE by the antibiotic d-CYCLOSERINE. Biochemistry. 1964;3:471–80.
Article
CAS
PubMed
Google Scholar
Musser JM, Kapur V, Williams DL, Kreiswirth BN, Van Soolingen D, Van Embden JDA. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptible strains of mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis. 1996;173:196–202.
Article
CAS
PubMed
Google Scholar
Rozwarski DA, Grant GA, Barton DH, Jacobs WR Jr, Sacchettini JC. Modification of the NADH of the isoniazid target (InhA) from mycobacterium tuberculosis. Science. 1998;279:98–102.
Article
CAS
PubMed
Google Scholar
Torres JN, Paul LV, Rodwell TC, Victor TC, Amallraja AM, Elghraoui A, et al. Novel katG mutations causing isoniazid resistance in clinical M. Tuberculosis isolates. Emerg Microbes Infect. 2015;4:e42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makarov V, Manina G, Mikusova K, Möllmann U, Ryabova O, Saint-Joanis B, et al. Benzothiazinones kill mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324:801–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med. 1996;2:662–7.
Article
CAS
PubMed
Google Scholar
Li G, Zhang J, Guo Q, Wei J, Jiang Y, Zhao X, et al. Study of efflux pump gene expression in rifampicin-monoresistant mycobacterium tuberculosis clinical isolates. J Antibiot. 2015;68:431–5.
Article
CAS
PubMed
Google Scholar