Costa RS, Hartmann A, Gaspar P, Neves AR, Vinga S. An extended dynamic model of lactococcus lactis metabolism for mannitol and 2,3-butanediol production. Mol Biosyst. 2014; 10:628–39.
Article
PubMed
CAS
Google Scholar
Rienksma RA, Suarez-Diaz M, Spina L, Schaap PJ, dos Santos VAPM. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin Immunol. 2014; 26:610–22.
Article
PubMed
CAS
Google Scholar
Varma A, Palsson BØ. Metabolic capabilities of escherichia coli: Ii. optimal growth patterns. J Theor Biol. 1993; 165:503–22.
Article
CAS
Google Scholar
Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Curr Opin Biotechnol. 2003; 14:491–6.
Article
PubMed
CAS
Google Scholar
Smallbone K, Mendes P. Large-scale metabolic models: from reconstruction to differential equations. Ind Biotechnol. 2013; 9:179–184.
Article
CAS
Google Scholar
Orth JD, Thiele I, Palsson BØ. What is flux balance analysis?. Nat Biotechnol. 2010; 28:245–248.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scheutz R, Kuepfar L, Sauer U. Systematic evaluation of objective functions for predicting intracellular fluxes in escherichia coli. Mol Syst Biol. 2007; 3:119.
Google Scholar
Machado D, Herrgard M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol. 2014; 10:1003580.
Article
CAS
Google Scholar
Liebermeister W, Klipp E. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model. 2006; 3:41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liebermeister W, Klipp E. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data. Theor Biol Med Model. 2006; 3:42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. Systematic construction of kinetic models from genome-scale metabolic networks. PLoS ONE. 2013; 8:79195.
Article
CAS
Google Scholar
Bordbar A, Monk JM, King ZA, Palsson BO. Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet. 2014; 15(2):107–20.
Article
PubMed
CAS
Google Scholar
Varma A, Palsson BØ. Metabolic capabilities of escherichia coli: I. synthesis of biosynthetic precursors and cofactors. J Theor Biol. 1993; 165:477–502.
Article
PubMed
CAS
Google Scholar
Kholodenko BN, Cascante M, Hoek JB, Westerhoff HV, Schwaber J. Metabolic design: how to engineer a living cell to desired metabolite concentrations and fluxes. Biotechnol Bioeng. 1998; 59:239–47.
Article
PubMed
CAS
Google Scholar
van Heck RGA, Ganter M, Martins dos Santos VAP, Stelling J. Efficient Reconstruction of Predictive Consensus Metabolic Network Models. PLOS Comput Biol. 2016; 12:1005085.
Article
CAS
Google Scholar
Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J, Hanscho M, Zielinski DC, Ang KS, Gardiner NJ, Gutierrez JM, Kyriakopoulos S, Lakshmanan M, Li S, Liu JK, Martinez VS, Orellana CA, Quek LE, Thomas A, Zanghellini J, Borth N, Lee DY, Nielsen LK, Kell DB, Lewis NE, Mendes P. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics. 2016; 12:109.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson JL, Nielsen J. Anticancer drug discovery through genome-scale metabolic modeling. Curr Opin Syst Biol. 2017; 4:1–8.
Article
Google Scholar
Geng J, Nielsen J. In silico analysis of human metabolism: Reconstruction, contextualization and application of genome-scale models. Curr Opin Syst Biol. 2017; 2:29–38.
Article
Google Scholar
Giuseppin MLF, van Riel NAW. Metabolic modeling of saccharomyces cerevisiae using the optimal control of homeostasis: a cybernetic modle definition. Metab Eng. 2000; 2:14–33.
Article
PubMed
CAS
Google Scholar
van Riel NAW, Giuseppin MLF, Verrips CT. Dynamic optimal control of homeostasis: an integrative system approach for modeling of the central nitrogen metabolism in saccharomyces cerevisiae. Metab Eng. 2000; 2:49–68.
Article
PubMed
CAS
Google Scholar
Mahadevan R, Edwards JS, III FJD. Dynamic flux balance analysis of diauxic growth in escherichia coli. Biophys J. 2002; 83:1331–40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee S, Phalakornkule C, Domach MM, Grossmann IE. Recursive milp model for finding all the alternate optima in lp models for metabolic networks. Comput Chem Eng. 2000; 24:711–6.
Article
CAS
Google Scholar
Maarleveld TR, Wortel MT, Olivier BG, Teusink B, Bruggeman FJ. Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models. PLoS Comput Biol. 2015; 11:1004166.
Article
CAS
Google Scholar
Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003; 5(4):264–76.
Article
PubMed
CAS
Google Scholar
Steuer R, Gross T, Selbig J, Blasius B. Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci U S A. 2006; 103:11868–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khodayari A, Zomorrodi AR, Liao JC, Maranas CD. A kinetic model of escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng. 2014; 25:50–62.
Article
PubMed
CAS
Google Scholar
Murabito E, Verma M, Bekker M, Bellomo D, Westerhoff HV, Teusink B, Steuer R. Monte-carlo modeling of the central carbon metabolism of lactococcus lactis: insights into metabolic regulation. PLoS ONE. 2014; 9:106453.
Article
CAS
Google Scholar
Du B, Zielinski DC, Kavvas ES, Dräger A, Tan J, Zhang Z, Ruggiero KE, Arzumanyan GA, Palsson BØ. Evaluation of rate law approximations in bottom-up kinetic models of metabolism. BMC Syst Biol. 2016; 10:40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D. Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. 2004; 32:431–3.
Article
CAS
Google Scholar
Wittig U, Kania R, Golebiewski M, Rey M, Shi L, Jong L, Algaa E, Weidemann A, Sauer-Danzwith H, Mir S, Krebs O, Bittkowski M, Wetsch E, Rojas I, Muller W. Sabio-rk - a database for biochemical reaction kinetics. Nucleic Acids Res. 2012; 40:790–6.
Article
CAS
Google Scholar
Flamholz A, Noor E, Bar-Even A, Milo R. equilibrator - the biochemical thermodynamics calculator. Nucleic Acids Res. 2012; 40:770–5.
Article
CAS
Google Scholar
Davidi D, Noor E, Liebermeister W, Bar-Even A, Flamholz A, Tummler K, Barenholz U, Goldenfeld M, Shlomi T, Milo R. Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. Proc Natl Acad Sci U S A. 2016; 113:3401–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liebermeister W, Uhlendorf J, Klipp E. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics. 2010; 26:1528–34.
Article
PubMed
CAS
Google Scholar
Lubitz T, Schulz M, Klipp E, Liebermeister W. Parameter balancing in kinetic models of cell metabolism. J Phys Chem B. 2010; 114:16298–303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Erdrich P, Steuer R, Klamt S. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models. BMC Syst Biol. 2015; 9:48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rao S, van der Schaft A, van Eunen K, Bakker BM, Jayawardhana B. A model reduction method for biochemical reaction networks. BMC Syst Biol. 2014; 8:52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuntz J, Oyarzun D, Stan GB. Model reduction of genetic-metabolic networks via time scale separation. In: A systems theoretic approach to systems and synthetic biology I: models and system characterization. Dordrecht: Springer: 2014.
Google Scholar
Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U. Copasi: a complex pathway simulator. Bioinformatics. 2006; 22:3067–74.
Article
PubMed
CAS
Google Scholar
Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional analysis of cellular networks with cellnetanalyzer. BMC Syst Biol. 2007; 1:2.
Article
PubMed
PubMed Central
Google Scholar
Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H. The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics. 2003; 19:524–31.
Article
PubMed
CAS
Google Scholar
Lubitz T, Hahn J, Bergmann FT, Noor E, Klipp E, Liebermeister W. SBtab: a flexible table format for data exchange in systems biology. Bioinformatics. 2016; 32(16):2559–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morgat A, Axelsen KB, Lombardot T, Alcantara R, Aimo L, Zerara M, Niknejad A, Belda E, Hyka-Nouspikel N, Coudert E, Redaschi N, Bougueleret L, Steinbeck C, Xenarios I, Bridge A. Updates in rhea - a manually curated resource of biochemical reactions. Nucleic Acids Res. 2015; 43:459–64.
Article
CAS
Google Scholar
Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Weerasinghe D, Zhang P, Karp PD. The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res. 2014; 42:459–71.
Article
CAS
Google Scholar
Moretti S, Martin O, Van Du Tran T, Bridge A, Morgat A, Pagni M. MetaNetX/MNXref – reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Res. 2016; 44(D1):523–6.
Article
CAS
Google Scholar
Bornstein BJ, Keating SM, Jouraku A, Hucka M. Libsbml: an api library for sbml. Bioinformatics. 2008; 24:880–1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka V, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A. Sympy: symbolic computing in python. PeerJ Comput Sci. 2017; 3:103.
Article
Google Scholar
Hackett SR, Zanotelli VRT, Xu W, Goya J, Park JO, Perlman DH, Gibney PA, Botstein D, Storey JD, Rabinowitz JD. Systems-level analysis of mechanisms regulating yeast metabolic flux. Science. 2016; 354(6311):2786–6.
Article
CAS
Google Scholar
Somogyi ET, Bouteiller J-M, Glazier JA, König M, Medley JK, Swat MH, Sauro HM. libRoadRunner: a high performance SBML simulation and analysis library. Bioinformatics. 2015; 31(20):3315–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jones E, Oliphant T, Peterson P. Scipy: open source scientific tools for python. 2001. www.scipy.org.
Ebrahim A, Lerman JA, Palsson BØ, Hyduke DR. Cobrapy: constraints-based reconstrunction and analysis for python. BMC Syst Biol. 2013; 7:74.
Article
PubMed
PubMed Central
Google Scholar
Orth JD, Palsson BØ, Fleming RMT. Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. EcoSal Plus. 2010; 4(1).
Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ. A comprehensive genome-scale reconstruction of escherichia coli metabolism. Mol Syst Biol. 2011; 7:535.
Article
PubMed
PubMed Central
Google Scholar
Österlund T, Nookaew I, Bordel S, Nielsen J. Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol. 2013; 7:36.
Article
PubMed
PubMed Central
Google Scholar
Noor E, Haraldsdóttir HS, Milo R, Fleming RMT. Consistent Estimation of Gibbs Energy Using Component Contributions. PLoS Comput Biol. 2013; 9(7):1003098.
Article
CAS
Google Scholar
Jahan N, Maeda K, Matsuoka Y, Sugimoto Y, Kurata H. Development of an accurate kinetic model for the central carbon metabolism of escherichia coli. Microb Cell Factories. 2016; 15:112.
Article
CAS
Google Scholar
Millard P, Smallbone K, Mendes P. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in escherichia coli. PLoS Comput Biol. 2017; 13:1005396.
Article
CAS
Google Scholar
Frölich F, Kaltenbacher B, Theis FJ, Hasenauer J. Scalable parameter estimation for genome-scale biochemical reaction networks. PLoS Comput Biol. 2017; 13:1005331.
Article
CAS
Google Scholar
Dräger A, Zielinski DC, Keller R, Rall M, Eichner J, Palsson BØ, Zell A. SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks. BMC Syst Biol. 2015; 9(1):68.
Article
PubMed
PubMed Central
Google Scholar
Reznik E, Christodoulou D, Goldford JE, Briars E, Sauer U, Segrè D, Noor E. Genome-Scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity. Cell Rep. 2017; 20(1):2666–77.
Article
PubMed
PubMed Central
CAS
Google Scholar