Eiteman MA, Altman E: Overcoming acetate in Escherichia coli recombinant protein fermentations. Trend Biotechnol. 2006, 24: 530-536. 10.1016/j.tibtech.2006.09.001.
Article
CAS
Google Scholar
Clomburg JM, Gonzalez R: Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol. 2010, 86: 419-434. 10.1007/s00253-010-2446-1
Article
CAS
PubMed
Google Scholar
Nakano K, Rischke M, Sato S, Märkl H: Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol. 1997, 48: 597-601. 10.1007/s002530051101
Article
CAS
PubMed
Google Scholar
Contiero J, Beatty CM, Kumari S, DeSanti CL, Strohl WR, Wolfe AJ: Effects of mutations in acetate metabolism in high-cell-density growth of Escherichia coli. J Ind Microbiol Biotechnol. 2000, 24: 421-430. 10.1038/sj.jim.7000014.
Article
CAS
Google Scholar
Wolfe AJ: The acetate switch. Microbiol Mol Biol Rev. 2005, 69: 12-50. 10.1128/MMBR.69.1.12-50.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Kumari S, Beatty CM, Browning DF, Busby SJ, Simel EJ, Hovel-Miner G, Wolfe AJ: Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol. 2000, 182: 4173-4179. 10.1128/JB.182.15.4173-4179.2000
Article
PubMed Central
CAS
PubMed
Google Scholar
Han K, Lim HC, Hong J: Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng. 1992, 39: 663-671. 10.1002/bit.260390611
Article
CAS
PubMed
Google Scholar
Farmer WR, Liao JC: Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol. 1997, 63: 3205-3210.
PubMed Central
CAS
PubMed
Google Scholar
Majewski RA, Domach MM: Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng. 1990, 35: 732-738. 10.1002/bit.260350711
Article
CAS
PubMed
Google Scholar
Veit A, Polen T, Wendisch V: Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl Microbiol Biotechnol. 2007, 74: 406-421. 10.1007/s00253-006-0680-3
Article
CAS
PubMed
Google Scholar
Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994, 60: 3724-3731.
PubMed Central
CAS
PubMed
Google Scholar
Paalme T, Elken R, Kahru A, Vanatalu K, Vilu R: The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach. Antonie van Leeuwenhoek. 1997, 71: 217-230. 10.1023/A:1000198404007
Article
CAS
PubMed
Google Scholar
Kayser A, Weber J, Hecht V, Rinas U: Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology. 2005, 151: 693-706. 10.1099/mic.0.27481-0
Article
CAS
PubMed
Google Scholar
El-Mansi M: Flux to acetate and lactate excretions in industrial fermentations: Physiological and biochemical implications. J Ind Microbiol Biotechnol. 2004, 31: 295-300. 10.1007/s10295-004-0149-2
Article
CAS
PubMed
Google Scholar
De Mey M, De Maeseneire S, Soetaert W, Vandamme E: Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol. 2007, 34: 689-700. 10.1007/s10295-007-0244-2
Article
CAS
PubMed
Google Scholar
El-Mansi EM, Holms WH: Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol. 1989, 135: 2875-2883.
CAS
PubMed
Google Scholar
Yang Y-T, Bennett GN, San K-Y: Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol Bioeng. 1999, 65: 291-297. 10.1002/(SICI)1097-0290(19991105)65:3<291::AID-BIT6>3.0.CO;2-F
Article
CAS
PubMed
Google Scholar
Dittrich CR, Vadali RV, Bennett GN, San K-Y: Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog. 2005, 21: 627-631. 10.1021/bp049730r
Article
CAS
PubMed
Google Scholar
Abdel-Hamid AM, Attwood MM, Guest JR: Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology. 2001, 147: 1483-1498.
Article
CAS
PubMed
Google Scholar
Phue J, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J: Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol Bioeng. 2005, 90: 805-820. 10.1002/bit.20478
Article
CAS
PubMed
Google Scholar
Castaño-Cerezo S, Pastor JM, Renilla S, Bernal V, Iborra JL, Cánovas M: An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Microb Cell Fact. 2009, 8: 54- 10.1186/1475-2859-8-54
Article
PubMed Central
PubMed
Google Scholar
Zhang W, Li F, Nie L: Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology. 2010, 156: 287-301. 10.1099/mic.0.034793-0
Article
CAS
PubMed
Google Scholar
Paalme T, Kahru A, Elken R, Vanatalu K, Tiisma K, Vilu R: The computer-controlled continuous culture of Escherichia coli with smooth change of dilution rate. J Microbiol Methods. 1995, 24: 145-153. 10.1016/0167-7012(95)00064-X.
Article
Google Scholar
Kasemets K, Drews M, Nisamedtinov I, Adamberg K, Paalme T: Modification of A-stat for the characterization of microorganisms. J Microbiol Methods. 2003, 55: 187-200. 10.1016/S0167-7012(03)00143-X
Article
CAS
PubMed
Google Scholar
Saier MH, Ramseier TO: The Catabolite Repressor/Activator (Cra) Protein of Enteric Bacteria. J Bacteriol. 1996, 178: 3411-3417.
PubMed Central
CAS
PubMed
Google Scholar
Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA: Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol. 2006, 72: 3653-3661. 10.1128/AEM.72.5.3653-3661.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M: Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science. 2007, 316: 593-597. 10.1126/science.1132067
Article
CAS
PubMed
Google Scholar
Shin S, Chang D, Pan JG: Acetate Consumption Activity Directly Determines the Level of Acetate Accumulation During Escherichia coli W3110 Growth. J Microbiol Biotechnol. 2009, 19: 1127-1134. 10.4014/jmb.0902.0097
Article
CAS
PubMed
Google Scholar
Barak R, Abouhamad WN, Eisenbach M: Both acetate kinase and acetyl coenzyme A synthetase are involved in acetate-stimulated change in the direction of flagellar rotation in Escherichia coli. J Bacteriol. 1998, 180: 985-988.
PubMed Central
CAS
PubMed
Google Scholar
Da Re SS, Deville-Bonne D, Tolstykh T, V ron M, Stock JB: Kinetics of CheY phosphorylation by small molecule phosphodonors. FEBS Lett. 1999, 457: 323-326. 10.1016/S0014-5793(99)01057-1
Article
CAS
PubMed
Google Scholar
Mayover TL, Halkides CJ, Stewart RC: Kinetic characterization of CheY phosphorylation reactions: comparison of P-CheA and small-molecule phosphodonors. Biochemistry. 1999, 38: 2259-2271. 10.1021/bi981707p
Article
CAS
PubMed
Google Scholar
Klein AH, Shulla A, Reimann Sa, Keating DH, Wolfe AJ: The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol. 2007, 189: 5574-5581. 10.1128/JB.00564-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Barak R, Welch M, Yanovsky A, Oosawa K, Eisenbach M: Acetyladenylate or its derivative acetylates the chemotaxis protein CheY in vitro and increases its activity at the flagellar switch. Biochemistry. 1992, 31: 10099-10107. 10.1021/bi00156a033
Article
CAS
PubMed
Google Scholar
Yan J, Barak R, Liarzi O, Shainskaya A, Eisenbach M: In vivo acetylation of CheY, a response regulator in chemotaxis of Escherichia coli. J Mol Biol. 2008, 376: 1260-1271. 10.1016/j.jmb.2007.12.070
Article
CAS
PubMed
Google Scholar
Matsubara M, Mizuno T: EnvZ-independent phosphotransfer signaling pathway of the OmpR-mediated osmoregulatory expression of OmpC and OmpF in Escherichia coli. Biosci Biotechnol Biochem. 1999, 63: 408-414. 10.1271/bbb.63.408
Article
CAS
PubMed
Google Scholar
Anfora AT, Halladin DK, Haugen BJ, Welch RA: Uropathogenic Escherichia coli CFT073 is adapted to acetatogenic growth but does not require acetate during murine urinary tract infection. Infect Immun. 2008, 76: 5760-5767. 10.1128/IAI.00618-08
Article
PubMed Central
CAS
PubMed
Google Scholar
McCleary W, Stock J: Acetyl phosphate and the activation of 2-component response regulators. J Biol Chem. 1994, 269: 31567-31572.
CAS
PubMed
Google Scholar
Feng J, Atkinson MR, McCleary W, Stock JB, Wanner BL, Ninfa AJ: Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol. 1992, 174: 6061-6070.
PubMed Central
CAS
PubMed
Google Scholar
Mizrahi I, Biran D, Ron EZ: Involvement of the Pta-AckA pathway in protein folding and aggregation. Res Microbiol. 2009, 160: 80-84. 10.1016/j.resmic.2008.10.007
Article
CAS
PubMed
Google Scholar
Wolfe AJ, Chang D-E, Walker JD, Seitz-Partridge JE, Vidaurri MD, Lange CF, Prüß BM, Henk MC, Larkin JC, Conway T: Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol Microbiol. 2003, 48: 977-988. 10.1046/j.1365-2958.2003.03457.x
Article
CAS
PubMed
Google Scholar
Shi IY, Kuzminov A: A Defect in the Acetyl Coenzyme-Acetate Pathway Poisons Recombinational Repair-Deficient Mutants of Escherichia coli. J Bacteriol. 2005, 187: 1266-1275. 10.1128/JB.187.4.1266-1275.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Nyström T: The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol Microbiol. 1994, 12: 833-843. 10.1111/j.1365-2958.1994.tb01069.x
Article
PubMed
Google Scholar
Postma E, Verduyn C, Scheffers Wa, Van Dijken JP: Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol. 1989, 55: 468-477.
PubMed Central
CAS
PubMed
Google Scholar
Lin H, Castro NM, Bennett GN, San K: Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl Microbiol Biotechnol. 2006, 71: 870-874. 10.1007/s00253-005-0230-4
Article
CAS
PubMed
Google Scholar
Rosenzweig F, Adams J: Microbial Evolution in a Simple Unstructured Environment: Genetic Differentiation in Escherichia coli. Genetics. 1994, 917: 903-917.
Google Scholar
Treves DS, Manning S, Adams J: Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol. 1998, 15: 789-797.
Article
CAS
PubMed
Google Scholar
Franchini AG, Egli T: Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology. 2006, 152: 2111-2127. 10.1099/mic.0.28939-0
Article
CAS
PubMed
Google Scholar
Hardiman T, Lemuth K, Keller M, Reuss M, Siemannherzberg M: Topology of the global regulatory network of carbon limitation in Escherichia coli. J Biotechnol. 2007, 132: 359-374. 10.1016/j.jbiotec.2007.08.029
Article
CAS
PubMed
Google Scholar
Görke B, Stülke JR: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008, 6: 613-624. 10.1038/nrmicro1932
Article
PubMed
Google Scholar
Narang A: Quantitative effect and regulatory function of cyclic adenosine 5′-phosphate in Escherichia coli. J Biosci. 2009, 34: 445-463. 10.1007/s12038-009-0051-1
Article
CAS
PubMed
Google Scholar
Nahku R, Valgepea K, Lahtvee PJ, Erm S, Abner K, Adamberg K, Vilu R: Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures. J Biotechnol. 2010, 145: 60-65. 10.1016/j.jbiotec.2009.10.007
Article
CAS
PubMed
Google Scholar
Nanchen A, Schicker A, Revelles O, Sauer U: Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. J Bacteriol. 2008, 190: 2323-2330. 10.1128/JB.01353-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Khankal R, Chin JW, Ghosh D, Cirino PC: Transcriptional effects of CRP* expression in Escherichia coli. J Biol Eng. 2009, 3: 13- 10.1186/1754-1611-3-13
Article
PubMed Central
PubMed
Google Scholar
Ishizuka H, Hanamura A, Inada T, Aiba H: Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: role of autoregulation of the crp gene. EMBO J. 1994, 13: 3077-3082.
PubMed Central
CAS
PubMed
Google Scholar
Sarkar D, Siddiquee KA, Araúzo-Bravo MJ, Oba T, Shimizu K: Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli. Arch Microbiol. 2008, 190: 559-751. 10.1007/s00203-008-0406-2
Article
CAS
PubMed
Google Scholar
Adamberg K, Lahtvee PJ, Valgepea K, Abner K, Vilu R: Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures. Antonie van Leeuwenhoek. 2009, 95: 219-226. 10.1007/s10482-009-9305-z
Article
PubMed
Google Scholar
Martens L, Hermjakob H, Jones P, Adamski M, Taylor C, States D, Gevaert K, Vandekerckhove J, Apweiler R: PRIDE: the proteomics identifications database. Proteomics. 2005, 5: 3537-3545. 10.1002/pmic.200401303
Article
CAS
PubMed
Google Scholar
Barsnes H, Vizcaíno JA, Eidhammer I, Martens L: PRIDE Converter: making proteomics data-sharing easy. Nat Biotechnol. 2009, 27: 598-599. 10.1038/nbt0709-598
Article
CAS
PubMed
Google Scholar