Papoutsakis ET: Equations and calculations for fermentations of butyric acid bacteria. Biotechnol Bioeng 1984, 26: 174-187. 10.1002/bit.260260210
Article
CAS
Google Scholar
Monot F, Martin JR, Petitdemange H, Gay R: Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium. Appl Environ Microbiol 1982, 44: 1318-1324.
CAS
Google Scholar
Girbal L, Soucaille P: Regulation of Clostridium-acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures - Role of Nadh/Nad ratio and Atp Pool. J Bacteriol 1994, 176: 6433-6438.
CAS
Google Scholar
Papoutsakis ET, Desai RP, Nielsen LK: Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J Biotechnol 1999, 71: 191-205. 10.1016/S0168-1656(99)00022-X
Article
Google Scholar
Calik P, Ozdamar TH: Bioreaction network flux analysis for industrial microorganisms: A review. Rev Chem Eng 2002, 18: 553-596.
Article
CAS
Google Scholar
Sillers R, Chow A, Tracy B, Papoutsakis ET: Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 2008, 10: 321-332. 10.1016/j.ymben.2008.07.005
Article
CAS
Google Scholar
Desai RP, Harris LM, Welker NE, Papoutsakis ET: Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum . Metab Eng 1999, 1: 206-213. 10.1006/mben.1999.0118
Article
CAS
Google Scholar
Desai RP, Nielsen LK, Papoutsakis ET: Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. J Biotechnol 1999, 71: 191-205. 10.1016/S0168-1656(99)00022-X
Article
CAS
Google Scholar
Lee J, Yun H, Feist AM, Palsson BO, Lee SY: Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 2008, 80: 849-862. 10.1007/s00253-008-1654-4
Article
CAS
Google Scholar
Senger RS: Biofuel production improvement with genome-scale models: The role of cell composition. Biotechnol J 2010, 5: 671-685. 10.1002/biot.201000007
Article
CAS
Google Scholar
Senger RS, Papoutsakis ET: Genome-scale model for Clostridium acetobutylicum : Part I. Metabolic network resolution and analysis. Biotechnol Bioeng 2008, 101: 1036-1052. 10.1002/bit.22010
Article
CAS
Google Scholar
Senger RS, Papoutsakis ET: Genome-scale model for Clostridium acetobutylicum : Part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng 2008, 101: 1053-1071. 10.1002/bit.22009
Article
CAS
Google Scholar
Milne CB, Kim PJ, Eddy JA, Price ND: Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J 2009, 4: 1653-1670. 10.1002/biot.200900234
Article
CAS
Google Scholar
Mahadevan R, Palsson BO, Lovley DR: In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat Rev Microbiol 2011, 9: 39-50. 10.1038/nrmicro2456
Article
CAS
Google Scholar
Feist AM, Palsson BO: The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli . Nat Biotechnol 2008, 26: 659-667. 10.1038/nbt1401
Article
CAS
Google Scholar
Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2009, 7: 129-143.
Article
CAS
Google Scholar
Papin JA, Price ND, Wiback SJ, Fell DA, Palsson BO: Metabolic pathways in the post-genome era. Trends Biochem Sci 2003, 28: 250-258. 10.1016/S0968-0004(03)00064-1
Article
CAS
Google Scholar
Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO: Comparison of network-based pathway analysis methods. Trends Biotechnol 2004, 22: 400-405. 10.1016/j.tibtech.2004.06.010
Article
CAS
Google Scholar
Price ND, Papin JA, Schilling CH, Palsson BO: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 2003, 21: 162-169. 10.1016/S0167-7799(03)00030-1
Article
CAS
Google Scholar
Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2004, 2: 886-897. 10.1038/nrmicro1023
Article
CAS
Google Scholar
Reed JL, Famili I, Thiele I, Palsson BO: Towards multidimensional genome annotation. Nat Rev Genet 2006, 7: 130-141. 10.1038/nrg1769
Article
CAS
Google Scholar
Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, Smid EJ: Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem 2006, 281: 40041-40048. 10.1074/jbc.M606263200
Article
CAS
Google Scholar
Gonzalez O, Gronau S, Falb M, Pfeiffer F, Mendoza E, Zimmer R, Oesterhelt D: Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. Mol Biosyst 2008, 4: 148-159. 10.1039/b715203e
Article
CAS
Google Scholar
Oliveira AP, Nielsen J, Forster J: Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 2005, 5: 39. 10.1186/1471-2180-5-39
Article
Google Scholar
Gianchandani EP, Papin JA, Price ND, Joyce AR, Palsson BO: Matrix formalism to describe functional states of transcriptional regulatory systems. PLoS Comput Biol 2006, 2: e101. 10.1371/journal.pcbi.0020101
Article
Google Scholar
Chandrasekaran S, Price ND: Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 2010, 107: 17845-17850. 10.1073/pnas.1005139107
Article
CAS
Google Scholar
Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4: R54. 10.1186/gb-2003-4-9-r54
Article
Google Scholar
Archer CT, Kim JF, Jeong H, Park JH, Vickers CE, Lee SY, Nielsen LK: The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 2011, 12: 9. 10.1186/1471-2164-12-9
Article
CAS
Google Scholar
Perumal D, Samal A, Sakharkar KR, Sakharkar MK: Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network. J Drug Target 2011, 19: 1-13. 10.3109/10611861003649753
Article
CAS
Google Scholar
Kim HU, Kim TY, Lee SY: Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Mol Biosyst 2010, 6: 339-348. 10.1039/b916446d
Article
CAS
Google Scholar
AbuOun M, Suthers PF, Jones GI, Carter BR, Saunders MP, Maranas CD, Woodward MJ, Anjum MF: Genome scale reconstruction of a Salmonella metabolic model: comparison of similarity and differences with a commensal Escherichia coli strain. J Biol Chem 2009, 284: 29480-29488. 10.1074/jbc.M109.005868
Article
CAS
Google Scholar
Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC: The genomic and epidemiological dynamics of human influenza A virus. Nature 2008, 453: 615-619. 10.1038/nature06945
Article
CAS
Google Scholar
Heinemann M, Kummel A, Ruinatscha R, Panke S: In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 2005, 92: 850-864. 10.1002/bit.20663
Article
CAS
Google Scholar
Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO: In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 2005, 91: 643-648. 10.1002/bit.20542
Article
CAS
Google Scholar
Kuepfer L, Sauer U, Blank LM: Metabolic functions of duplicate genes in Saccharomyces cerevisiae . Genome Res 2005, 15: 1421-1430. 10.1101/gr.3992505
Article
CAS
Google Scholar
Burgard AP, Pharkya P, Maranas CD: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003, 84: 647-657. 10.1002/bit.10803
Article
CAS
Google Scholar
Pharkya P, Burgard AP, Maranas CD: OptStrain: a computational framework for redesign of microbial production systems. Genome Res 2004, 14: 2367-2376. 10.1101/gr.2872004
Article
CAS
Google Scholar
Ranganathan S, Suthers PF, Maranas CD: OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 2010, 6: e1000744. 10.1371/journal.pcbi.1000744
Article
Google Scholar
Jones SW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, Papoutsakis ET: The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 2008, 9: R114. 10.1186/gb-2008-9-7-r114
Article
Google Scholar
Mermelstein LD, Papoutsakis ET: In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3 T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1993, 59: 1077-1081.
CAS
Google Scholar
Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN: Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 1996, 142: 2079-2086. 10.1099/13500872-142-8-2079
Article
CAS
Google Scholar
Harris LM, Desai RP, Welker NE, Papoutsakis ET: Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 2000, 67: 1-11. 10.1002/(SICI)1097-0290(20000105)67:1<1::AID-BIT1>3.0.CO;2-G
Article
CAS
Google Scholar
Tummala SB, Junne SG, Papoutsakis ET: antisense RNA downregulation of coenzyme a transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations. J Bacteriol 2003, 185: 3644-3653. 10.1128/JB.185.12.3644-3653.2003
Article
CAS
Google Scholar
Sillers R, Al-Hinai MA, Papoutsakis ET: Aldehyde–alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 2009, 102: 38-49. 10.1002/bit.22058
Article
CAS
Google Scholar
Fischer E, Sauer U: Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. European journal of biochemistry /FEBS 2003, 270: 880-891. 10.1046/j.1432-1033.2003.03448.x
Article
CAS
Google Scholar
Fischer E, Zamboni N, Sauer U: High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13 C constraints. Anal Biochem 2004, 325: 308-316. 10.1016/j.ab.2003.10.036
Article
CAS
Google Scholar
Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wuthrich K, Bailey JE: Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 1999, 181: 6679-6688.
CAS
Google Scholar
Buhler B, Park JB, Blank LM, Schmid A: NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Appl Environ Microbiol 2008, 74: 1436-1446. 10.1128/AEM.02234-07
Article
Google Scholar
Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wuthrich K: Metabolic fluxes in riboflavin-producing Bacillus subtilis . Nat Biotechnol 1997, 15: 448-452. 10.1038/nbt0597-448
Article
CAS
Google Scholar
Tummala SB, Welker NE, Papoutsakis ET: Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum . J Bacteriol 2003, 185: 1923-1934. 10.1128/JB.185.6.1923-1934.2003
Article
CAS
Google Scholar
Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28: 27-30. 10.1093/nar/28.1.27
Article
CAS
Google Scholar
Crown SB, Indurthi DC, Ahn WS, Choi J, Papoutsakis ET, Antoniewicz MR: Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: Isotopomer analysis, in vitro activities and expression analysis. Biotechnol J 2011, 6: 300-305. 10.1002/biot.201000282
Article
CAS
Google Scholar
Amador-Noguez D, Feng XJ, Fan J, Roquet N, Rabitz H, Rabinowitz JD: Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum . J Bacteriol 2010, 192: 4452-4461. 10.1128/JB.00490-10
Article
CAS
Google Scholar
Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V: Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 2008, 95: 1487-1499. 10.1529/biophysj.107.124784
Article
CAS
Google Scholar
Henry CS, Broadbelt LJ, Hatzimanikatis V: Thermodynamics-based metabolic flux analysis. Biophys J 2007, 92: 1792-1805. 10.1529/biophysj.106.093138
Article
CAS
Google Scholar
Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2007, 2: 727-738. 10.1038/nprot.2007.99
Article
CAS
Google Scholar
Edwards JS, Ibarra RU, Palsson BO: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001, 19: 125-130. 10.1038/84379
Article
CAS
Google Scholar
Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET: Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 2001, 27: 322-328. 10.1038/sj.jim.7000191
Article
CAS
Google Scholar
Meyer CL, Papoutsakis ET: Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum . Appl Environ Microbiol 1989, 30: 450-459.
CAS
Google Scholar