Goetz CG: Textbook of Clinical Neurology. St. Louis, MO: WB Saunders; 2003.
Google Scholar
Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, Minowa O, Kuno J, Sakakibara S, Yamada M, et al: Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 1996, 379: 168-171. 10.1038/379168a0
Google Scholar
van de Leemput J, Chandran J, Knight M, Holtzclaw L, Scholz S, Cookson M, Houlden H, Gwinn-Hardy K, Fung H, Lin X, et al: Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 2007, 3: e108. 10.1371/journal.pgen.0030108
Google Scholar
Street V, Bosma M, Demas V, Regan M, Lin D, Robinson L, Agnew W, Tempel B: The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J Neurosci 1997, 17: 635-645.
Google Scholar
Ogura H, Matsumoto M, Mikoshiba K: Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. Behav Brain Res 2001, 122: 215-219. 10.1016/S0166-4328(01)00187-5
Google Scholar
Chen X, Tang T, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 2008, 28: 12713-12724. 10.1523/JNEUROSCI.3909-08.2008
Google Scholar
Chou A, Yeh T, Ouyang P, Chen Y, Chen S, Wang H: Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol Dis 2008, 31: 89-101. 10.1016/j.nbd.2008.03.011
Google Scholar
Inoue T, Lin X, Kohlmeier K, Orr H, Zoghbi H, Ross W: Calcium dynamics and electrophysiological properties of cerebellar Purkinje cells in SCA1 transgenic mice. J Neurophysiol 2001, 85: 1750-1760.
Google Scholar
Lin X, Antalffy B, Kang D, Orr H, Zoghbi H: Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 2000, 3: 157-163. 10.1038/72101
Google Scholar
Liu J, Tang T, Tu H, Nelson O, Herndon E, Huynh D, Pulst S, Bezprozvanny I: Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 2009, 29: 9148-9162. 10.1523/JNEUROSCI.0660-09.2009
Google Scholar
Serra H, Byam C, Lande J, Tousey S, Zoghbi H, Orr H: Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice. Hum Mol Genet 2004, 13: 2535-2543. 10.1093/hmg/ddh268
Google Scholar
Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D, Li W, Furuya H, Ohyagi Y, Taniwaki T, Kira J, Fukumaki Y: Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 2008, 45: 32-35.
Google Scholar
Desaiah D, Vig P, Subramony S, Currier R: Inositol 1,4,5-trisphosphate receptors and protein kinase C in olivopontocerebellar atrophy. Brain Res 1991, 552: 36-40. 10.1016/0006-8993(91)90656-G
Google Scholar
Zecevic N, Milosevic A, Ehrlich B: Calcium signaling molecules in human cerebellum at midgestation and in ataxia. Early Hum Dev 1999, 54: 103-116. 10.1016/S0378-3782(98)00090-5
Google Scholar
Di Gregorio E, Orsi L, Godani M, Vaula G, Jensen S, Salmon E, Ferrari G, Squadrone S, Abete M, Cagnoli C, et al: Two Italian Families with ITPR1 Gene Deletion Presenting a Broader Phenotype of SCA15. Cerebellum 2010, 9: 115-123. 10.1007/s12311-009-0154-0
Google Scholar
Hara K, Shiga A, Nozaki H, Mitsui J, Takahashi Y, Ishiguro H, Yomono H, Kurisaki H, Goto J, Ikeuchi T, et al: Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology 2008, 71: 547-551. 10.1212/01.wnl.0000311277.71046.a0
Google Scholar
Novak M, Davis M, Li A, Goold R, Tabrizi S, Sweeney M, Houlden H, Treacy C, Giunti P: PAW32 ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description of a novel kindred. J Neurol Neurosurg Psychiatry 2010, 81: e32.
Google Scholar
Bezprozvanny I: Role of Inositol 1,4,5-Trishosphate Receptors in Pathogenesis of Huntington's Disease and Spinocerebellar Ataxias. Neurochem Res 2011, 36: 1186-1197. 10.1007/s11064-010-0393-y
Google Scholar
Schorge S, van de Leemput J, Singleton A, Houlden H, Hardy J: Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends Neurosci 2010, 33: 211-219. 10.1016/j.tins.2010.02.005
Google Scholar
Kurnellas M, Lee A, Li H, Deng L, Ehrlich D, Elkabes S: Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Mol Cell Neurosci 2007, 34: 178-188. 10.1016/j.mcn.2006.10.010
Google Scholar
Tu H, Tang T, Wang Z, Bezprozvanny I: Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J Biol Chem 2004, 279: 19375-19382. 10.1074/jbc.M313476200
Google Scholar
Bezprozvanny I: The inositol 1,4,5-trisphosphate receptors. Cell Calcium 2005, 38: 261-272. 10.1016/j.ceca.2005.06.030
Google Scholar
Burright E, Clark H, Servadio A, Matilla T, Feddersen R, Yunis W, Duvick L, Zoghbi H, Orr H: SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 1995, 82: 937-948. 10.1016/0092-8674(95)90273-2
Google Scholar
Orr H, Chung M, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet A, McCall A, Duvick L, Ranum L, Zoghbi H: Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993, 4: 221-226. 10.1038/ng0793-221
Google Scholar
Pulst S, Nechiporuk A, Nechiporuk T, Gispert S, Chen X, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, et al: Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996, 14: 269-276.
Google Scholar
Boy J, Schmidt T, Schumann U, Grasshoff U, Unser S, Holzmann C, Schmitt I, Karl T, Laccone F, Wolburg H, et al: A transgenic mouse model of spinocerebellar ataxia type 3 resembling late disease onset and gender-specific instability of CAG repeats. Neurobiol Dis 2010, 37: 284-293. 10.1016/j.nbd.2009.08.002
Google Scholar
Dürr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, Chneiweiss H, Benomar A, Lyon-Caen O, Julien J, et al: Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol 1996, 39: 490-499. 10.1002/ana.410390411
Google Scholar
Paulson H, Perez M, Trottier Y, Trojanowski J, Subramony S, Das S, Vig P, Mandel J, Fischbeck K, Pittman R: Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 1997, 19: 333-344. 10.1016/S0896-6273(00)80943-5
Google Scholar
Mantuano E, Veneziano L, Spadaro M, Giunti P, Guida S, Leggio M, Verriello L, Wood N, Jodice C, Frontali M: Clusters of non-truncating mutations of P/Q type Ca2+ channel subunit Ca(v)2.1 causing episodic ataxia 2. J Med Genet 2004, 41: e82. 10.1136/jmg.2003.015396
Google Scholar
Inoue T: Dynamics of calcium and its roles in the dendrite of the cerebellar Purkinje cell. Keio J Med 2003, 52: 244-249. 10.2302/kjm.52.244
Google Scholar
Gardner R: "SCA16" is really SCA15. J Med Genet 2008, 45: 192.
Google Scholar
Brown S-A, Loew LM: Toward A Computational Model Of IP3R1-associated Ataxia. Biophysical Journal 2009,96(3:S1):96a.
Google Scholar
Khodakhah K, Ogden D: Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. Proc Natl Acad Sci U S A 1993, 90: 4976-4980. 10.1073/pnas.90.11.4976
Google Scholar
Fujiwara A, Hirose K, Yamazawa T, Iino M: Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons. Neuroreport 2001, 12: 2647-2651. 10.1097/00001756-200108280-00012
Google Scholar
Hernjak N, Slepchenko B, Fernald K, Fink C, Fortin D, Moraru I, Watras J, Loew L: Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophys J 2005, 89: 3790-3806. 10.1529/biophysj.105.065771
Google Scholar
Brown SA, Moraru II, Schaff JC, Loew LM: Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling. J Comput Neurosci 2011, 31: 385-400. 10.1007/s10827-011-0317-0
Google Scholar
Loew L, Schaff J: The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol 2001, 19: 401-406. 10.1016/S0167-7799(01)01740-1
Google Scholar
Schaff J, Fink C, Slepchenko B, Carson J, Loew L: A general computational framework for modeling cellular structure and function. Biophys J 1997, 73: 1135-1146. 10.1016/S0006-3495(97)78146-3
Google Scholar
Schaff J, Slepchenko B, Loew L: Physiological modeling with virtual cell framework. Methods Enzymol 2000, 321: 1-23.
Google Scholar
Cowan AE, Moraru II, Schaff JC, Slepchenko BM, Loew LM: Spatial modeling of cell signaling networks. Methods Cell Biol 2012, 110: 195-221.
Google Scholar
Moraru I, Schaff J, Slepchenko B, Loew L: The virtual cell: an integrated modeling environment for experimental and computational cell biology. Ann N Y Acad Sci 2002, 971: 595-596. 10.1111/j.1749-6632.2002.tb04535.x
Google Scholar
Brown S, Morgan F, Watras J, Loew L: Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys J 2008, 95: 1795-1812. 10.1529/biophysj.108.130195
Google Scholar
Tang T, Tu H, Wang Z, Bezprozvanny I: Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha. J Neurosci 2003, 23: 403-415.
Google Scholar
Wang S, Denk W, Häusser M: Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 2000, 3: 1266-1273. 10.1038/81792
Google Scholar
Finch E, Augustine G: Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 1998, 396: 753-756. 10.1038/25541
Google Scholar
Takechi H, Eilers J, Konnerth A: A new class of synaptic response involving calcium release in dendritic spines. Nature 1998, 396: 757-760. 10.1038/25547
Google Scholar
Destexhe A, Babloyantz A, Sejnowski T: Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 1993, 65: 1538-1552. 10.1016/S0006-3495(93)81190-1
Google Scholar
De Schutter E, Bower J: An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 1994, 71: 375-400.
Google Scholar
Miyasho T, Takagi H, Suzuki H, Watanabe S, Inoue M, Kudo Y, Miyakawa H: Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Res 2001, 891: 106-115. 10.1016/S0006-8993(00)03206-6
Google Scholar
Gabbiani F, Midtgaard J, Knöpfel T: Synaptic integration in a model of cerebellar granule cells. J Neurophysiol 1994, 72: 999-1009.
Google Scholar
Cui J, Yang H, Lee U: Molecular mechanisms of BK channel activation. Cell Mol Life Sci 2009, 66: 852-875. 10.1007/s00018-008-8609-x
Google Scholar
Tang T, Tu H, Chan E, Maximov A, Wang Z, Wellington C, Hayden M, Bezprozvanny I: Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 2003, 39: 227-239. 10.1016/S0896-6273(03)00366-0
Google Scholar
Tang T, Guo C, Wang H, Chen X, Bezprozvanny I: Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model. J Neurosci 2009, 29: 1257-1266. 10.1523/JNEUROSCI.4411-08.2009
Google Scholar
Brown SA, Holmes RM, Loew LM: Spatial Organization and Diffusion in Neuronal Signaling. In Computational Systems Neurobiology. Edited by: Novère N. Dordrecht: Springer; 2012. Chapter 5, in press
Google Scholar
Tu H, Wang Z, Bezprozvanny I: Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 2005, 88: 1056-1069. 10.1529/biophysj.104.049601
Google Scholar
Sarkisov D, Wang S: Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci 2008, 28: 133-142. 10.1523/JNEUROSCI.1729-07.2008
Google Scholar
Kasumu A, Bezprozvanny I: Deranged Calcium Signaling in Purkinje Cells and Pathogenesis in Spinocerebellar Ataxia 2 (SCA2) and Other Ataxias. Cerebellum 2010. 10.1007/s12311-010-0182-9
Google Scholar
Miyata M, Finch E, Khiroug L, Hashimoto K, Hayasaka S, Oda S, Inouye M, Takagishi Y, Augustine G, Kano M: Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 2000, 28: 233-244. 10.1016/S0896-6273(00)00099-4
Google Scholar
Wagner W, Hammer Jr: Myosin V and the endoplasmic reticulum: the connection grows. J Cell Biol 2003, 163: 1193-1196. 10.1083/jcb.200311077
Google Scholar
Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio M: Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice. Eur J Neurosci 2000, 12: 945-954. 10.1046/j.1460-9568.2000.00986.x
Google Scholar
Vig PJ, Wei J, Shao Q, Lopez ME, Halperin R, Gerber J: Suppression of Calbindin-D28k Expression Exacerbates SCA1 Phenotype in a Disease Mouse Model. Cerebellum 2011. 10.1007/s12311-011-0323-9
Google Scholar
Schmidt H, Stiefel K, Racay P, Schwaller B, Eilers J: Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol 2003, 551: 13-32. 10.1113/jphysiol.2002.035824
Google Scholar
Vig P, Subramony S, Burright E, Fratkin J, McDaniel D, Desaiah D, Qin Z: Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Neurology 1998, 50: 106-113. 10.1212/WNL.50.1.106
Google Scholar
Vig P, Subramony S, McDaniel D: Calcium homeostasis and spinocerebellar ataxia-1 (SCA-1). Brain Res Bull 2001, 56: 221-225. 10.1016/S0361-9230(01)00595-0
Google Scholar
Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer C, Feil R, Hofmann F, et al: Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2 + −activated K + channel deficiency. Proc Natl Acad Sci U S A 2004, 101: 9474-9478. 10.1073/pnas.0401702101
Google Scholar
Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, Servais L: BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 2009, 4: e7991. 10.1371/journal.pone.0007991
Google Scholar
Kent J, Meredith A: BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus. PLoS One 2008, 3: e3884. 10.1371/journal.pone.0003884
Google Scholar
Womack M, Khodakhah K: Dendritic control of spontaneous bursting in cerebellar Purkinje cells. J Neurosci 2004, 24: 3511-3521. 10.1523/JNEUROSCI.0290-04.2004
Google Scholar
Walter J, Alviña K, Womack M, Chevez C, Khodakhah K: Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 2006, 9: 389-397. 10.1038/nn1648
Google Scholar
Oliver D, Taberner A, Thurm H, Sausbier M, Arntz C, Ruth P, Fakler B, Liberman M: The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 2006, 26: 6181-6189. 10.1523/JNEUROSCI.1047-06.2006
Google Scholar
Weaver A, Olsen M, McFerrin M, Sontheimer H: BK channels are linked to inositol 1,4,5-triphosphate receptors via lipid rafts: a novel mechanism for coupling [Ca(2+)](i) to ion channel activation. J Biol Chem 2007, 282: 31558-31568. 10.1074/jbc.M702866200
Google Scholar
Dai S, Hall D, Hell J: Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 2009, 89: 411-452. 10.1152/physrev.00029.2007
Google Scholar
Sakagami Y, Yamamoto K, Sugiura S, Inokuchi K, Hayashi T, Kato N: Essential roles of Homer-1a in homeostatic regulation of pyramidal cell excitability: a possible link to clinical benefits of electroconvulsive shock. Eur J Neurosci 2005, 21: 3229-3239. 10.1111/j.1460-9568.2005.04165.x
Google Scholar
Vaithianathan T, Bukiya A, Liu J, Liu P, Asuncion-Chin M, Fan Z, Dopico A: Direct regulation of BK channels by phosphatidylinositol 4,5-bisphosphate as a novel signaling pathway. J Gen Physiol 2008, 132: 13-28. 10.1085/jgp.200709913
Google Scholar
Bezprozvanny I, Watras J, Ehrlich B: Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991, 351: 751-754. 10.1038/351751a0
Google Scholar
Guida S, Trettel F, Pagnutti S, Mantuano E, Tottene A, Veneziano L, Fellin T, Spadaro M, Stauderman K, Williams M, et al: Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am J Hum Genet 2001, 68: 759-764. 10.1086/318804
Google Scholar
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton D, Amos C, Dobyns W, Subramony S, Zoghbi H, Lee C: Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997, 15: 62-69. 10.1038/ng0197-62
Google Scholar
Yue Q, Jen J, Nelson S, Baloh R: Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet 1997, 61: 1078-1087. 10.1086/301613
Google Scholar
Imbrici P, Cusimano A, D'Adamo M, De Curtis A, Pessia M: Functional characterization of an episodic ataxia type-1 mutation occurring in the S1 segment of hKv1.1 channels. Pflugers Arch 2003, 446: 373-379.
Google Scholar
Adachi N, Arima K, Asada T, Kato M, Minami N, Goto Yi, Onuma T, Ikeuchi T, Tsuji S, Hayashi M, Fukutani Y: Dentatorubral-pallidoluysian atrophy (DRPLA) presenting with psychosis. J Neuropsychiatry Clin Neurosci 2001, 13: 258-260. 10.1176/appi.neuropsych.13.2.258
Google Scholar
Martins S, Matamá T, Guimarães L, Vale J, Guimarães J, Ramos L, Coutinho P, Sequeiros J, Silveira I: Portuguese families with dentatorubropallidoluysian atrophy (DRPLA) share a common haplotype of Asian origin. Eur J Hum Genet 2003, 11: 808-811. 10.1038/sj.ejhg.5201054
Google Scholar
Yabe I, Sasaki H, Kikuchi S, Nonaka M, Moriwaka F, Tashiro K: Late onset ataxia phenotype in dentatorubro-pallidoluysian atrophy (DRPLA). J Neurol 2002, 249: 432-436. 10.1007/s004150200034
Google Scholar
Naito H, Oyanagi S: Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 1982, 32: 798-807. 10.1212/WNL.32.8.798
Google Scholar
Bezprozvanny I: Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009, 15: 89-100. 10.1016/j.molmed.2009.01.001
Google Scholar
Bezprozvanny I, Hayden M: Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun 2004, 322: 1310-1317. 10.1016/j.bbrc.2004.08.035
Google Scholar
Zhang H, Li Q, Graham R, Slow E, Hayden M, Bezprozvanny I: Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Neurobiol Dis 2008, 31: 80-88. 10.1016/j.nbd.2008.03.010
Google Scholar
Bezprozvanny I: Inositol 1,4,5-tripshosphate receptor, calcium signalling and Huntington's disease. Subcell Biochem 2007, 45: 323-335. 10.1007/978-1-4020-6191-2_11
Google Scholar
Stevanin G, Dürr A, Brice A: Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet 2000, 8: 4-18. 10.1038/sj.ejhg.5200403
Google Scholar
Schmidt T, Lindenberg K, Krebs A, Schöls L, Laccone F, Herms J, Rechsteiner M, Riess O, Landwehrmeyer G: Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26 S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 2002, 51: 302-310. 10.1002/ana.10101
Google Scholar
Klement I, Skinner P, Kaytor M, Yi H, Hersch S, Clark H, Zoghbi H, Orr H: Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 1998, 95: 41-53. 10.1016/S0092-8674(00)81781-X
Google Scholar
Makarewicz D, Ziemińska E, Łazarewicz J: Dantrolene inhibits NMDA-induced 45Ca uptake in cultured cerebellar granule neurons. Neurochem Int 2003, 43: 273-278. 10.1016/S0197-0186(03)00012-3
Google Scholar
Zhao F, Li P, Chen S, Louis C, Fruen B: Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. J Biol Chem 2001, 276: 13810-13816.
Google Scholar
Fruen B, Mickelson J, Louis C: Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors. J Biol Chem 1997, 272: 26965-26971. 10.1074/jbc.272.43.26965
Google Scholar
Krause T, Gerbershagen M, Fiege M, Weisshorn R, Wappler F: Dantrolene–a review of its pharmacology, therapeutic use and new developments. Anaesthesia 2004, 59: 364-373. 10.1111/j.1365-2044.2004.03658.x
Google Scholar
Gerbershagen M, Fiege M, Krause T, Agarwal K, Wappler F: Dantrolene. Pharmacological and therapeutic aspects. Anaesthesist 2003, 52: 238-245. 10.1007/s00101-003-0461-7
Google Scholar
Kobayashi S, Yano M, Suetomi T, Ono M, Tateishi H, Mochizuki M, Xu X, Uchinoumi H, Okuda S, Yamamoto T, et al: Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol 2009, 53: 1993-2005. 10.1016/j.jacc.2009.01.065
Google Scholar
Sharp AH, McPherson PS, Dawson TM, Aoki C, Campbell KP, Snyder SH: Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci 1993, 13: 3051-3063.
Google Scholar
Walton PD, Airey JA, Sutko JL, Beck CF, Mignery GA, Südhof TC, Deerinck TJ, Ellisman MH: Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Cell Biol 1991, 113: 1145-1157. 10.1083/jcb.113.5.1145
Google Scholar
Khodakhah K, Armstrong CM: Inositol trisphosphate and ryanodine receptors share a common functional Ca2+ pool in cerebellar Purkinje neurons. Biophys J 1997, 73: 3349-3357. 10.1016/S0006-3495(97)78359-0
Google Scholar
Ln W, Li W, Yule D: Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2+ and S2- splice variants. J Biol Chem 2003, 278: 45811-45817. 10.1074/jbc.M306270200
Google Scholar
Imbrici P, D'Adamo M, Cusimano A, Pessia M: Episodic ataxia type 1 mutation F184C alters Zn2 + −induced modulation of the human K + channel Kv1.4-Kv1.1/Kvbeta1.1. Am J Physiol Cell Physiol 2007, 292: C778-787.
Google Scholar
Imbrici P, D'Adamo M, Kullmann D, Pessia M: Episodic ataxia type 1 mutations in the KCNA1 gene impair the fast inactivation properties of the human potassium channels Kv1.4–1.1/Kvbeta1.1 and Kv1.4–1.1/Kvbeta1.2. Eur J Neurosci 2006, 24: 3073-3083. 10.1111/j.1460-9568.2006.05186.x
Google Scholar
Tonelli A, D'Angelo M, Salati R, Villa L, Germinasi C, Frattini T, Meola G, Turconi A, Bresolin N, Bassi M: Early onset, non fluctuating spinocerebellar ataxia and a novel missense mutation in CACNA1A gene. J Neurol Sci 2006, 241: 13-17. 10.1016/j.jns.2005.10.007
Google Scholar