Gilsbach R, Hein L. Are the pharmacology and physiology of α2 adrenoceptors determined by α2-heteroreceptors and autoreceptors respectively? Br J Pharmacol. 2012;165:90–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science. 1996;273:803–5.
Article
CAS
PubMed
Google Scholar
Paris A, Philipp M, Tonner PH, Steinfath M, Lohse M, Scholz J, et al. Activation of alpha 2B-adrenoceptors mediates the cardiovascular effects of etomidate. Anesthesiology. 2003;99:889–95.
Article
CAS
PubMed
Google Scholar
Talke P, Lobo E, Brown R. Systemically administered alpha2-agonist-induced peripheral vasoconstriction in humans. Anesthesiology. 2003;99:65–70.
Article
CAS
PubMed
Google Scholar
Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–94.
Article
CAS
PubMed
Google Scholar
MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science. 1996;273:801–3.
Article
CAS
PubMed
Google Scholar
Aantaa R, Jalonen J. Perioperative use of alpha2-adrenoceptor agonists and the cardiac patient. Eur J Anaesthesiol. 2006;23:361–72.
Article
CAS
PubMed
Google Scholar
Bruzzone A, Piñero CP, Castillo LF, Sarappa MG, Rojas P, Lanari C, et al. Alpha2-adrenoceptor action on cell proliferation and mammary tumour growth in mice. Br J Pharmacol. 2008;155:494–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez Piñero C, Bruzzone A, Sarappa MG, Castillo LF, Lüthy IA. Involvement of α2- and β2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br J Pharmacol. 2012;166:721–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xia M, Tong J-H, Zhou Z-Q, Duan M-L, Xu J-G, Zeng H-J, et al. Tramadol inhibits proliferation, migration and invasion via α2-adrenoceptor signaling in breast cancer cells. Eur Rev Med Pharmacol Sci. 2016;20:157–65.
CAS
PubMed
Google Scholar
Vázquez SM, Mladovan AG, Pérez C, Bruzzone A, Baldi A, Lüthy IA. Human breast cell lines exhibit functional alpha2-adrenoceptors. Cancer Chemother Pharmacol. 2006;58:50–61.
Article
PubMed
CAS
Google Scholar
Cussac D, Schaak S, Gales C, Flordellis C, Denis C, Paris H. Alpha(2B)-adrenergic receptors activate MAPK and modulate proliferation of primary cultured proximal tubule cells. Am. J. Physiol. Renal Physiol. 2002;282:F943–52.
Article
CAS
Google Scholar
Kribben A, Herget-Rosenthal S, Lange B, Erdbrügger W, Philipp T, Michel MC. Alpha2-adrenoceptors in opossum kidney cells couple to stimulation of mitogen-activated protein kinase independently of adenylyl cyclase inhibition. Naunyn Schmiedeberg's Arch Pharmacol. 1997;356:225–32.
Article
CAS
Google Scholar
Seuwen K, Magnaldo I, Kobilka BK, Caron MG, Regan JW, Lefkowitz RJ, et al. Alpha 2-adrenergic agonists stimulate DNA synthesis in Chinese hamster lung fibroblasts transfected with a human alpha 2-adrenergic receptor gene. Cell Regul. 1990;1:445–51.
CAS
PubMed
PubMed Central
Google Scholar
Kanno N, Lesage G, Phinizy JL, Glaser S, Francis H, Alpini G. Stimulation of alpha2-adrenergic receptor inhibits cholangiocarcinoma growth through modulation of Raf-1 and B-Raf activities. Hepatology. 2002;35:1329–40.
Article
CAS
PubMed
Google Scholar
Karkoulias G, Mastrogianni O, Ilias I, Lymperopoulos A, Taraviras S, Tsopanoglou N, et al. Alpha 2-adrenergic receptors decrease DNA replication and cell proliferation and induce neurite outgrowth in transfected rat pheochromocytoma cells. Ann N Y Acad Sci. 2006;1088:335–45.
Article
CAS
PubMed
Google Scholar
Huhtinen A, Scheinin M. Expression and characterization of the human alpha 2B-adrenoceptor in a vascular smooth muscle cell line. Eur J Pharmacol. 2008;587:48–56.
Article
CAS
PubMed
Google Scholar
Campbell GR, Campbell JH. Smooth muscle phenotypic changes in arterial wall homeostasis: implications for the pathogenesis of atherosclerosis. Exp Mol Pathol. 1985;42:139–62.
Article
CAS
PubMed
Google Scholar
Shi N, Chen S-Y. Mechanisms simultaneously regulate smooth muscle proliferation and differentiation. J Biomed Res. 2014;28:40–6.
CAS
PubMed
Google Scholar
Kimura TE, Duggirala A, Hindmarch CCT, Hewer RC, Cui M-Z, Newby AC, et al. Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells. J Mol Cell Cardiol. 2014;72:9–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75:487–517.
CAS
PubMed
Google Scholar
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801.
Article
CAS
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
Google Scholar
The R Project for Statistical Computing [Internet]. [cited 2016 Jul 6]. Available from: https://www.r-project.org/
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bioconductor Open Source Software for Bioinformatics [Internet]. [cited 2016 Jul 6]. Available from: http://www.bioconductor.org/
Laiho A, Király A, Gyenesei A. GeneFuncster: a web tool for Gene functional enrichment analysis and visualisation. CMSB; 2012. p. 382–5.
Google Scholar
Group HB. GeneFuncster [Internet]. [cited 2016 Jul 6]. Available from: http://bioinfo.utu.fi/GeneFuncster
Ingenuity [Internet]. [cited 2016 Jul 6]. Available from: http://www.ingenuity.com/
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Hilhorst R, Houkes L, Mommersteeg M, Musch J, van den Berg A, Ruijtenbeek R. Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples. Methods Mol Biol. 2013;977:259–71.
Article
CAS
PubMed
Google Scholar
Sikkema AH, Diks SH, den Dunnen WFA, ter Elst A, Scherpen FJG, Hoving EW, et al. Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Res. 2009;69:5987–95.
Article
CAS
PubMed
Google Scholar
Hilhorst R, Houkes L, van den Berg A, Ruijtenbeek R. Peptide microarrays for detailed, high-throughput substrate identification, kinetic characterization, and inhibition studies on protein kinase a. Anal Biochem. 2009;387:150–61.
Article
CAS
PubMed
Google Scholar
Versele M, Talloen W, Rockx C, Geerts T, Janssen B, Lavrijssen T, et al. Response prediction to a multitargeted kinase inhibitor in cancer cell lines and xenograft tumors using high-content tyrosine peptide arrays with a kinetic readout. Mol Cancer Ther. 2009;8:1846–55.
Article
CAS
PubMed
Google Scholar
PamGene BioNavigator [Internet]. [cited 2016 Jul 6]. Available from: https://www.pamgene.com/en/bionavigator.htm
PhosphoNET Human Phosphosite KnowledgeBase [Internet]. [cited 2016 Jul 6]. Available from: http://www.phosphonet.ca/
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9–18.
Article
CAS
PubMed
Google Scholar
Baker AH. MicroRNA 21 “shapes” vascular smooth muscle behavior through regulating tropomyosin 1. Arterioscler Thromb Vasc Biol. 2011;31:1941–2.
Article
PubMed
Google Scholar
Schwartz SM, de Blois D, O’Brien ER. The intima. Soil for atherosclerosis and restenosis. Circ Res. 1995;77:445–65.
Article
CAS
PubMed
Google Scholar
Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol Annual Reviews. 2012;74:13–40.
Article
CAS
Google Scholar
Olli-Lähdesmäki T, Tiger M, Vainio M, Scheinin M, Kallio J. Ligand-induced alpha2-adrenoceptor endocytosis: relationship to Gi protein activation. Biochem Biophys Res Commun. 2004;321:226–33.
Article
PubMed
CAS
Google Scholar
Ge H, Olli-Lähdesmäki T, Kallio J, Scheinin M. Alpha 2B-Adrenoceptor levels govern agonist and inverse agonist responses in PC12 cells. Biochem. Biophys. Res. Communications. 2003;308:12–8.
CAS
Google Scholar
Olli-Lähdesmäki T, Kallio J, Scheinin M. Receptor subtype-induced targeting and subtype-specific internalization of human alpha(2)-adrenoceptors in PC12 cells. J Neurosci. 1999;19:9281–8.
PubMed
Google Scholar
Olli-Lähdesmäki T, Scheinin M, Pohjanoksa K, Kallio J. Agonist-dependent trafficking of alpha2-adrenoceptor subtypes: dependence on receptor subtype and employed agonist. Eur J Cell Biol. 2003;82:231–9.
Article
PubMed
Google Scholar
Buffin-Meyer B, Crassous P-A, Delage C, Denis C, Schaak S, Paris H. EGF receptor transactivation and PI3-kinase mediate stimulation of ERK by α2A-adrenoreceptor in intestinal epithelial cells: a role in wound healing. Eur J Pharmacol. 2007;574:85–93.
Article
CAS
PubMed
Google Scholar
Karkoulias G, Mastrogianni O, Lymperopoulos A, Paris H, Flordellis C. α2-adrenergic receptors activate MAPK and Akt through a pathway involving arachidonic acid metabolism by cytochrome P450-dependent epoxygenase, matrix metalloproteinase activation and subtype-specific transactivation of EGFR. Cell Signal. 2006;18:729–39.
Article
CAS
PubMed
Google Scholar
Desai AN, Salim S, Standifer KM, Eikenburg DC. Involvement of G protein-coupled receptor Kinase (GRK) 3 and GRK2 in down-regulation of the 2B-Adrenoceptor. J Pharmacol Exp Ther American Society for Pharmacology and Experimental Therapeutics. 2006;317:1027–35.
Article
CAS
PubMed
Google Scholar
Ge H, Scheinin M, Kallio J. Constitutive precoupling to G(i) and increased agonist potency in the alpha(2B)-adrenoceptor. Biochem Biophys Res Commun. 2003;306:959–65.
Article
CAS
PubMed
Google Scholar
Jansson CC, Pohjanoksa K, Lang J, Wurster S, Savola JM, Scheinin M. Alpha2-adrenoceptor agonists stimulate high-affinity GTPase activity in a receptor subtype-selective manner. Eur J Pharmacol. 1999;374:137–46.
Article
CAS
PubMed
Google Scholar
Pohjanoksa K, Jansson CC, Luomala K, Marjamäki A, Savola JM, Scheinin M. Alpha2-adrenoceptor regulation of adenylyl cyclase in CHO cells: dependence on receptor density, receptor subtype and current activity of adenylyl cyclase. Eur J Pharmacol. 1997;335:53–63.
Article
CAS
PubMed
Google Scholar
Jeyaraj SC, Chotani MA, Mitra S, Gregg HE, Flavahan NA, Morrison KJ. Cooling evokes redistribution of alpha2C-adrenoceptors from Golgi to plasma membrane in transfected human embryonic kidney 293 cells. Mol Pharmacol. 2001;60:1195–200.
CAS
PubMed
Google Scholar
Chotani MA, Flavahan S, Mitra S, Daunt D, Flavahan NA. Silent alpha(2C)-adrenergic receptors enable cold-induced vasoconstriction in cutaneous arteries. Am J Physiol Heart Circ Physiol. 2000;278:H1075–83.
CAS
PubMed
Google Scholar
Chotani MA, Mitra S, Su BY, Flavahan S, Eid AH, Clark KR, et al. Regulation of alpha(2)-adrenoceptors in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2004;286:H59–67.
Article
CAS
PubMed
Google Scholar
Chotani MA, Mitra S, Eid AH, Han SA, Flavahan NA. Distinct cAMP signaling pathways differentially regulate alpha2C-adrenoceptor expression: role in serum induction in human arteriolar smooth muscle cells. Am J Physiol Heart Circ Physiol. 2005;288:H69–76.
Article
CAS
PubMed
Google Scholar
Eid AH, Maiti K, Mitra S, Chotani MA, Flavahan S, Bailey SR, et al. Estrogen increases smooth muscle expression of α2C-adrenoceptors and cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol. 2007;293:H1955–61.
Article
CAS
PubMed
Google Scholar
Eid AH, Chotani MA, Mitra S, Miller TJ, Flavahan NA. Cyclic AMP acts through Rap1 and JNK signaling to increase expression of cutaneous smooth muscle alpha2C-adrenoceptors. Am J Physiol Heart Circ Physiol. 2008;295:H266–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motawea HKB, Blazek AD, Zirwas MJ, Pleister AP, Ahmed AAE, McConnell BK, et al. Delocalization of endogenous A-kinase antagonizes Rap1-rho-α2C-Adrenoceptor signaling in human Microvascular smooth muscle cells. J Cytol Mol Biol. 2014;1:1000002.
PubMed
PubMed Central
Google Scholar
Björk S, Huhtinen A, Vuorenpää A, Scheinin M. Quantitative determination of α(2B)-adrenoceptor-evoked myosin light chain phosphorylation in vascular smooth muscle cells. J Pharmacol Toxicol Methods. Elsevier Inc. 2014;70:152–62.
Article
PubMed
CAS
Google Scholar
Morey JS, Ryan JC, Van Dolah FM. Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online. 2006;8:175–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Hou R, Li P, Li J, Yan J, Yin F, et al. Gene expression profiles in response to the activation of adrenoceptors in A7r5 aortic smooth muscle cells. Clin Exp Pharmacol Physiol. 2004;31:602–7.
Article
CAS
PubMed
Google Scholar
Pang X, Sun N. Calcineurin-NFAT signaling is involved in phenylephrine-induced vascular smooth muscle cell proliferation. Acta Pharmacol Sin. 2009;30:537–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
LeClair KP, Palfree RG, Flood PM, Hammerling U, Bothwell A. Isolation of a murine Ly-6 cDNA reveals a new multigene family. EMBO J. 1986;5:3227–34.
CAS
PubMed
PubMed Central
Google Scholar
Stroncek DF, Caruccio L, Bettinotti M. CD177: a member of the Ly-6 gene superfamily involved with neutrophil proliferation and polycythemia vera. J Transl Med. 2004;2:8.
Article
PubMed
PubMed Central
Google Scholar
Ni J, Lang Q, Bai M, Zhong C, Chen X, Wan B, et al. Cloning and characterization of a human LYPD7, a new member of the Ly-6 superfamily. Mol Biol Rep. 2009;36:697–703.
Article
CAS
PubMed
Google Scholar
Ameyar M, Wisniewska M, Weitzman JB. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003;85:747–52.
Article
CAS
PubMed
Google Scholar
Okumura R, Kurakawa T, Nakano T, Kayama H, Kinoshita M, Motooka D, et al. Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature. Nature Publishing Group. 2016;532:117–21.
Article
CAS
PubMed
Google Scholar
Tarcic G, Avraham R, Pines G, Amit I, Shay T, Lu Y, et al. EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. FASEB J. 2012;26:1582–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khachigian LM. Early growth response-1 in cardiovascular Pathobiology. Circ Res. 2006;98:186–91.
Article
CAS
PubMed
Google Scholar
Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002;193:287–92.
Article
CAS
PubMed
Google Scholar
Liu Q-F, Yu H-W, You L, Liu M-X, Li K-Y, Tao G-Z. Apelin-13-induced proliferation and migration induced of rat vascular smooth muscle cells is mediated by the upregulation of Egr-1. Biochem Biophys Res Commun. 2013;439:235–40.
Article
CAS
PubMed
Google Scholar
Pagel J-I, Ziegelhoeffer T, Heil M, Fischer S, Fernández B, Schaper W, et al. Role of early growth response 1 in arteriogenesis: impact on vascular cell proliferation and leukocyte recruitment in vivo. Thromb Haemost. 2012;107:562–74.
Article
CAS
PubMed
Google Scholar
Schecter AD, Giesen PL, Taby O, Rosenfield CL, Rossikhina M, Fyfe BS, et al. Tissue factor expression in human arterial smooth muscle cells. TF is present in three cellular pools after growth factor stimulation. J Clin Invest. 1997;100:2276–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pyo RT, Sato Y, Mackman N, Taubman MB. Mice deficient in tissue factor demonstrate attenuated intimal hyperplasia in response to vascular injury and decreased smooth muscle cell migration. Thromb Haemost. 2004;92:451–8.
CAS
PubMed
Google Scholar
Giannarelli C, Alique M, Rodriguez DT, Yang DK, Jeong D, Calcagno C, et al. Alternatively spliced tissue factor promotes plaque angiogenesis through the activation of hypoxia-inducible factor-1α and vascular endothelial growth factor signaling. Circulation. 2014;130:1274–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steffel J, Lüscher TF, Tanner FC. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation. 2006;113:722–31.
Article
CAS
PubMed
Google Scholar
Yisireyili M, Saito S, Abudureyimu S, Adelibieke Y, Ng H-Y, Nishijima F, et al. Indoxyl sulfate-induced activation of (pro)renin receptor promotes cell proliferation and tissue factor expression in vascular smooth muscle cells. PLoS One. 2014;9:e109268.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wan K, Li J, Li D, Ge J, Wang Y, Li X, et al. Novel hydroxybutyl chitosan nanoparticles for siRNA delivery targeting tissue factor inhibits proliferation and induces apoptosis in human vascular smooth muscle cells. Mol Med Rep. 2015;12:7957–62.
CAS
PubMed
PubMed Central
Google Scholar
Tzeng H-P, Sen YR, Ueng T-H, Liu S-H. Upregulation of cyclooxygenase-2 by motorcycle exhaust particulate-induced reactive oxygen species enhances rat vascular smooth muscle cell proliferation. Chem Res Toxicol. 2007;20:1170–6.
Article
CAS
PubMed
Google Scholar
Hu Z-W, Kerb R, Shi X-Y, Wei-Lavery T, Hoffman BB. Angiotensin II increases expression of cyclooxygenase-2: implications for the function of vascular smooth muscle cells. J Pharmacol Exp Ther. 2002;303:563–73.
Article
CAS
PubMed
Google Scholar
Aguado A, Galán M, Zhenyukh O, Wiggers GA, Roque FR, Redondo S, et al. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicol Appl Pharmacol. 2013;268:188–200.
Article
CAS
PubMed
Google Scholar
Haider A, Lee I, Grabarek J, Darzynkiewicz Z, Ferreri NR. Dual functionality of cyclooxygenase-2 as a regulator of tumor necrosis factor-mediated G1 shortening and nitric oxide-mediated inhibition of vascular smooth muscle cell proliferation. Circulation. 2003;108:1015–21.
Article
CAS
PubMed
Google Scholar
Choi HC, Kim HS, Lee KY, Chang KC, Kang YJ. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1beta-stimulated vascular smooth muscle cells by induction of HO-1. Biochem Biophys Res Commun. 2008;376:753–7.
Article
CAS
PubMed
Google Scholar
Chang C-C, Duann Y-F, Yen T-L, Chen Y-Y, Jayakumar T, Ong E-T, et al. Andrographolide, a novel NF-κB inhibitor, inhibits vascular smooth muscle cell proliferation and cerebral endothelial cell inflammation. Acta Cardiol Sin. 2014;30:308–15.
PubMed
PubMed Central
Google Scholar
Yang H-L, Huang P-J, Liu Y-R, Kumar KJS, Hsu L-S, Lu T-L, et al. Toona Sinensis inhibits LPS-induced inflammation and migration in vascular smooth muscle cells via suppression of reactive oxygen species and NF-κB signaling pathway. Oxidative Med Cell Longev. 2014;2014:901315.
Google Scholar
Chen Z, Yu Y, Fu D, Li Z, Niu X, Liao M, et al. Functional roles of PC-PLC and Cdc20 in the cell cycle, proliferation, and apoptosis. Cell Biochem Funct. 2010;28:249–57.
Article
PubMed
CAS
Google Scholar
Wang L, Zhang J, Wan L, Zhou X, Wang Z, Wei W. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol Ther 2015 151:141–151.
Kolosova IA, Angelini D, Fan C, Skinner J, Cheadle C, Johns RA. Resistin-like molecule α stimulates proliferation of mesenchymal stem cells while maintaining their multipotency. Stem Cells Dev. 2013;22:239–47.
Article
CAS
PubMed
Google Scholar
Jeong IK, Oh DH, Park SJ, Kang JH, Kim S, Lee MS, et al. Inhibition of NF-κB prevents high glucose-induced proliferation and plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Exp Mol Med. 2011;43:684–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samarakoon R, Higgins PJ. Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb Haemost. 2008;100:976–83.
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Budd RC, Kelm RJ, Sobel BE, Schneider DJ. Augmentation of proliferation of vascular smooth muscle cells by plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol. 2006;26:1777–83.
Article
CAS
PubMed
Google Scholar
Balsara RD, Ploplis VA. Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost. 2008;100:1029–36.
CAS
PubMed
PubMed Central
Google Scholar
Beauchamp NJ, van Achterberg TA, Engelse MA, Pannekoek H, de Vries CJ. Gene expression profiling of resting and activated vascular smooth muscle cells by serial analysis of gene expression and clustering analysis. Genomics. 2003;82:288–99.
Article
CAS
PubMed
Google Scholar
Knudsen BS, Harpel PC, Nachman RL. Plasminogen activator inhibitor is associated with the extracellular matrix of cultured bovine smooth muscle cells. J Clin Invest. 1987;80:1082–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goyal R, Longo LD. Gene expression in sheep carotid arteries: major changes with maturational development. Pediatr Res. 2012;72:137–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi C, Huang D, Lu N, Chen D, Zhang M, Yan Y, et al. Aberrantly activated Gli2-KIF20A axis is crucial for growth of hepatocellular carcinoma and predicts poor prognosis. Oncotarget. 2016;7:26206–19.
PubMed
PubMed Central
Google Scholar
Stangel D, Erkan M, Buchholz M, Gress T, Michalski C, Raulefs S, et al. Kif20a inhibition reduces migration and invasion of pancreatic cancer cells. J Surg Res. 2015;197:91–100.
Article
CAS
PubMed
Google Scholar
Tsihlis ND, Oustwani CS, Vavra AK, Jiang Q, Keefer LK, Kibbe MR. Nitric oxide inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by increasing the ubiquitination and degradation of UbcH10. Cell Biochem Biophys. 2011;60:89–97.
Article
CAS
PubMed
Google Scholar
Schirger JA, Grantham JA, Kullo IJ, Jougasaki M, Wennberg PW, Chen HH, et al. Vascular actions of brain natriuretic peptide: modulation by atherosclerosis and neutral endopeptidase inhibition. J Am Coll Cardiol. 2000;35:796–801.
Article
CAS
PubMed
Google Scholar
Casco VH, Veinot JP. Kuroski de bold ML, masters RG, Stevenson MM, de bold AJ. Natriuretic peptide system gene expression in human coronary arteries. J Histochem Cytochem. 2002;50:799–809.
Article
CAS
PubMed
Google Scholar
Nakayama T. The genetic contribution of the natriuretic peptide system to cardiovascular diseases. Endocr J. 2005;52:11–21.
Article
CAS
PubMed
Google Scholar
Berk BC. Vascular smooth muscle growth: Autocrine growth mechanisms. Physiol Rev. 2001;81:999–1030.
CAS
PubMed
Google Scholar
Carrillo-Sepulveda MA, Matsumoto T. Phenotypic modulation of mesenteric vascular smooth muscle cells from type 2 diabetic rats is associated with decreased caveolin-1 expression. Cell Physiol Biochem. 2014;34:1497–506.
Article
CAS
PubMed
Google Scholar
Luo D, Cheng J, Xiong Y, Li J, Xia C, Xu C, et al. Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway. Biochem Biophys Res Commun. 2010;391:1693–7.
Article
CAS
PubMed
Google Scholar
Mulas MF, Maxia A, Dessì S, Mandas A. Cholesterol esterification as a mediator of proliferation of vascular smooth muscle cells and peripheral blood mononuclear cells during atherogenesis. J Vasc Res. 2014;51:14–26.
Article
CAS
PubMed
Google Scholar
Schwencke C, Schmeisser A, Walter C, Wachter R, Pannach S, Weck B, et al. Decreased caveolin-1 in atheroma: loss of antiproliferative control of vascular smooth muscle cells in atherosclerosis. Cardiovasc Res. 2005;68:128–35.
Article
CAS
PubMed
Google Scholar
Williams TM, Lisanti MP. The Caveolin genes: from cell biology to medicine. Ann Med. 2004;36:584–95.
Article
CAS
PubMed
Google Scholar
Wang M, Li W, Chang G-Q, Ye C-S, Ou J-S, Li X-X, et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31:2044–53.
Article
CAS
PubMed
Google Scholar
Tseliou M, Al-Qahtani A, Alarifi S, Alkahtani SH, Stournaras C, Sourvinos G. The role of RhoA, RhoB and RhoC GTPases in cell morphology, proliferation and migration in human cytomegalovirus (HCMV) infected Glioblastoma cells. Cell Physiol Biochem. 2016;38:94–109.
Article
CAS
PubMed
Google Scholar
Yu L, Quinn DA, Garg HG, Hales CA. Heparin inhibits pulmonary artery smooth muscle cell proliferation through guanine nucleotide exchange factor-H1/RhoA/rho kinase/p27. Am J Respir Cell Mol Biol. 2011;44:524–30.
Article
CAS
PubMed
Google Scholar
Hung C-N, Huang H-P, Lii C-K, Liu K-L, Wang C-J. Sulforaphane inhibits smooth muscle cell proliferation and migration by reducing MMP-9 activity via the Ras and RhoA/ROCK pathways. J Funct Foods. 2013;5:1097–107.
Article
CAS
Google Scholar
Rigassi L, Barchiesi Bozzolo F, Lucchinetti E, Zaugg M, Fingerle J, Rosselli M, et al. 2-Methoxyestradiol blocks the RhoA/ROCK1 pathway in human aortic smooth muscle cells. Am J Physiol Endocrinol Metab. 2015;309:E995–1007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du C-Q, Liu X-W, Zeng G-Z, Jin H-F, Tang L-J. Inhibition of farnesyl pyrophosphate synthase attenuates angiotensin II-induced fibrotic responses in vascular smooth muscle cells. Int J Mol Med. 2015;35:1767–72.
CAS
PubMed
Google Scholar
Croft DR, Olson MF. The rho GTPase effector ROCK regulates cyclin a, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol. 2006;26:4612–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renteria LS, Austin M, Lazaro M, Andrews MA, Lustina J, Raj JU, et al. RhoA-rho kinase and platelet-activating factor stimulation of ovine foetal pulmonary vascular smooth muscle cell proliferation. Cell Prolif. 2013;46:563–75.
CAS
PubMed
PubMed Central
Google Scholar
Mack CP, Hinson JS. Regulation of smooth muscle differentiation by the myocardin family of serum response factor co-factors. J Thromb Haemost. 2005;3:1976–84.
Article
CAS
PubMed
Google Scholar
Sedding DG, Braun-Dullaeus RC. Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med. 2006;16:50–5.
Article
CAS
PubMed
Google Scholar
Gosens R, Stelmack GL, Bos ST, Dueck G, Mutawe MM, Schaafsma D, et al. Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. J Cell Mol Med. 2011;15:2430–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeng J, Sheverdin V, Shin H, Ha I, Bae SS, Yang-Yen H-F, et al. Up-regulation of Rhoa/rho kinase pathway by translationally controlled tumor protein in vascular smooth muscle cells. Int J Mol Sci. 2014;15:10365–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimokawa H, Sunamura S, Satoh K. RhoA/rho-Kinase in the cardiovascular system. Circ Res. 2016;118:352–66.
Article
CAS
PubMed
Google Scholar
Vrhovski B, McKay K, Schevzov G, Gunning PW, Weinberger RP. Smooth muscle-specific alpha tropomyosin is a marker of fully differentiated smooth muscle in lung. J Histochem Cytochem. 2005;53:875–83.
Article
CAS
PubMed
Google Scholar
Thyberg J. Caveolin-1 and caveolae act as regulators of mitogenic signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23:1481–3.
Article
CAS
PubMed
Google Scholar
Peterson TE, Guicciardi ME, Gulati R, Kleppe LS, Mueske CS, Mookadam M, et al. Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol. 2003;23:1521–7.
Article
CAS
PubMed
Google Scholar
Sathish V, Yang B, Meuchel LW, VanOosten SK, Ryu AJ, Thompson MA, et al. Caveolin-1 and force regulation in porcine airway smooth muscle. Am. J. Physiol. Lung cell. Mol. Phys Ther. 2011;300:L920–9.
CAS
Google Scholar
Je H-D, Gallant C, Leavis PC, Morgan KG. Caveolin-1 regulates contractility in differentiated vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2004;286:H91–8.
Article
CAS
PubMed
Google Scholar
Grayson TH, Ohms SJ, Brackenbury TD, Meaney KR, Peng K, Pittelkow YE, et al. Vascular microarray profiling in two models of hypertension identifies caveolin-1, Rgs2 and Rgs5 as antihypertensive targets. BMC Genomics. 2007;8:404.
Article
PubMed
PubMed Central
Google Scholar
Gunning P, O’Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev. 2008;88:1–35.
Article
CAS
PubMed
Google Scholar
Marston S, El-Mezgueldi M. Role of tropomyosin in the regulation of contraction in smooth muscle. Adv Exp Med Biol. 2008;644:110–23.
Article
CAS
PubMed
Google Scholar
Urata Y, Goto S, Kawakatsu M, Yodoi J, Eto M, Akishita M, et al. DHEA attenuates PDGF-induced phenotypic proliferation of vascular smooth muscle A7r5 cells through redox regulation. Biochem Biophys Res Commun. 2010;396:489–94.
Article
CAS
PubMed
Google Scholar
Bansal G, Das D, Hsieh C-Y, Wang Y-H, Gilmore BA, Wong C-M, et al. IL-22 activates oxidant signaling in pulmonary vascular smooth muscle cells. Cell Signal. 2013;25:2727–33.
Article
CAS
PubMed
Google Scholar
Fernandes AP, Capitanio A, Selenius M, Brodin O, Rundlöf A-K, Björnstedt M. Expression profiles of thioredoxin family proteins in human lung cancer tissue: correlation with proliferation and differentiation. Histopathology. 2009;55:313–20.
Article
PubMed
Google Scholar
Kondo T, Hirose M, Kageyama K. Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thromb. 2009;16:532–8.
Article
CAS
PubMed
Google Scholar
Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal. 2008;10:1941–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandrasekar B, Mummidi S, Perla RP, Bysani S, Dulin NO, Liu F, et al. Fractalkine (CX3CL1) stimulated by nuclear factor kappaB (NF-kappaB)-dependent inflammatory signals induces aortic smooth muscle cell proliferation through an autocrine pathway. Biochem J. 2003;373:547–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
White GE, Tan TCC, John AE, Whatling C, McPheat WL, Greaves DR. Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling. Cardiovasc Res. 2010;85:825–35.
Article
CAS
PubMed
Google Scholar
van der Vorst EPC, Vanags LZ, Dunn LL, Prosser HC, Rye K-A, Bursill CA. High-density lipoproteins suppress chemokine expression and proliferation in human vascular smooth muscle cells. FASEB J. 2013;27:1413–25.
Article
PubMed
CAS
Google Scholar
Perros F, Dorfmüller P, Souza R, Durand-Gasselin I, Godot V, Capel F, et al. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. Eur Respir J. 2007;29:937–43.
Article
CAS
PubMed
Google Scholar
Liu W, Jiang L, Bian C, Liang Y, Xing R, Yishakea M, et al. Role of CX3CL1 in diseases. Arch Immunol Ther Exp. 2016;64:371–83.
Article
CAS
Google Scholar
Porreca E, Di Febbo C, Reale M, Castellani ML, Baccante G, Barbacane R, et al. Monocyte Chemotactic protein 1 (MCP-1) is a Mitogen for cultured rat vascular smooth muscle cells. J Vasc Res Karger Publishers. 1997;34:58–65.
Article
CAS
Google Scholar
Viedt C, Vogel J, Athanasiou T, Shen W, Orth SR, Kübler W, et al. Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1. Arterioscler Thromb Vasc Biol. 2002;22:914–20.
Article
CAS
PubMed
Google Scholar
Kundumani-Sridharan V, Singh NK, Kumar S, Gadepalli R, Rao GN. Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeli. J Biol Chem. 2013;288:22150–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Girona J, Rosales R, Plana N, Saavedra P, Masana L, Vallvé J-C. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway. PLoS One. 2013;8:e81914.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Y-J, Wu L-S, Shu B, Qian M-Z. MCPIP1 mediates MCP-1-induced vascular smooth muscle cell proliferation. Acta Phys Sin. 2013;65:616–22.
CAS
Google Scholar
Qi X, Zhang Y, Li J, Hou D, Xiang Y. Effect of PGC-1α on proliferation, migration, and transdifferentiation of rat vascular smooth muscle cells induced by high glucose. J Biomed Biotechnol. 2012;2012:756426.
PubMed
PubMed Central
Google Scholar
Bhardwaj S, Roy H, Babu M, Shibuya M, Yla-Herttuala S. Adventitial gene transfer of VEGFR-2 specific VEGF-E chimera induces MCP-1 expression in vascular smooth muscle cells and enhances neointimal formation. Atherosclerosis. 2011;219:84–91.
Article
CAS
PubMed
Google Scholar
Ikeda U, Okada K, Ishikawa S, Saito T, Kasahara T, Shimada K. Monocyte chemoattractant protein 1 inhibits growth of rat vascular smooth muscle cells. Am J Phys. 1995;268:H1021–6.
CAS
Google Scholar
Detmar M, Tenorio S, Hettmannsperger U, Ruszczak Z, Orfanos CE. Cytokine regulation of proliferation and ICAM-1 expression of human dermal microvascular endothelial cells in vitro. J Invest Dermatol. 1992;98:147–53.
Article
CAS
PubMed
Google Scholar
Braun M. Cellular adhesion molecules on vascular smooth muscle cells. Cardiovasc Res. 1999;41:395–401.
Article
CAS
PubMed
Google Scholar
Lawson C, Ainsworth ME, McCormack AM, Yacoub M, Rose ML. Effects of cross-linking ICAM-1 on the surface of human vascular smooth muscle cells: induction of VCAM-1 but no proliferation. Cardiovasc Res. 2001;50:547–55.
Article
CAS
PubMed
Google Scholar
Jones FS, Meech R, Edelman DB, Oakey RJ, Jones PL. Prx1 controls vascular smooth muscle cell proliferation and tenascin-C expression and is upregulated with Prx2 in pulmonary vascular disease. Circ Res. 2001;89:131–8.
Article
CAS
PubMed
Google Scholar
Jones FS, McKean DM, Meech R, Edelman DB, Oakey RJ, Jones PL. Regulation of vascular smooth muscle cell growth and adhesion by paired-related homeobox genes. Chest. 2002;121:89S–90S.
Article
PubMed
Google Scholar
Taubman MB, Rollins BJ, Poon M, Marmur J, Green RS, Berk BC, et al. JE mRNA accumulates rapidly in aortic injury and in platelet-derived growth factor-stimulated vascular smooth muscle cells. Circ Res. 1992;70:314–25.
Article
CAS
PubMed
Google Scholar
Torzewski J, Oldroyd R, Lachmann P, Fitzsimmons C, Proudfoot D, Bowyer D. Complement-induced release of monocyte chemotactic protein-1 from human smooth muscle cells. A possible initiating event in atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol. 1996;16:673–7.
Article
CAS
PubMed
Google Scholar
Bishop-Bailey D, Burke-Gaffney A, Hellewell PG, Pepper JR, Mitchell JA. Cyclo-oxygenase-2 regulates inducible ICAM-1 and VCAM-1 expression in human vascular smooth muscle cells. Biochem Biophys Res Commun. 1998;249:44–7.
Article
CAS
PubMed
Google Scholar
Couffinhal T, Duplaa C, Moreau C, Lamaziere JM, Bonnet J. Regulation of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular smooth muscle cells. Circ Res. 1994;74:225–34.
Article
CAS
PubMed
Google Scholar
Couffinhal T, Duplàa C, Labat L, Lamaziere JM, Moreau C, Printseva O, et al. Tumor necrosis factor-alpha stimulates ICAM-1 expression in human vascular smooth muscle cells. Arterioscler Thromb. 1993;13:407–14.
Article
CAS
PubMed
Google Scholar
Yao Q-P, Zhang P, Qi Y-X, Chen S-G, Shen B, Han Y, et al. The role of SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain. Int J Biochem Cell Biol. 2014;49:98–104.
Article
CAS
PubMed
Google Scholar
Shang Y, Yoshida T, Amendt BA, Martin JF, Owens GK. Pitx2 is functionally important in the early stages of vascular smooth muscle cell differentiation. J Cell Biol. 2008;181:461–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hautmann MB, Thompson MM, Swartz EA, Olson EN, Owens GK. Angiotensin II-induced stimulation of smooth muscle alpha-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ Res. 1997;81:600–10.
Article
CAS
PubMed
Google Scholar
Yoshida T, Hoofnagle MH, Owens GK. Myocardin and Prx1 contribute to angiotensin II-induced expression of smooth muscle alpha-actin. Circ Res. 2004;94:1075–82.
Article
CAS
PubMed
Google Scholar
Liao Y, Shikapwashya ON, Shteyer E, Dieckgraefe BK, Hruz PW, Rudnick DA. Delayed hepatocellular mitotic progression and impaired liver regeneration in early growth response-1-deficient mice. J Biol Chem. 2004;279:43107–16.
Article
CAS
PubMed
Google Scholar
Kharbanda S, Nakamura T, Stone R, Hass R, Bernstein S, Datta R, et al. Expression of the early growth response 1 and 2 zinc finger genes during induction of monocytic differentiation. J Clin Invest. 1991;88:571–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan CM, Limbird LE. The alpha2-adrenergic receptors - lessons from knockouts. In: Perez DM, editor. Adren. Recept. 21st century. Totowa: Humana Press; 2006. p. 241–65.
Chapter
Google Scholar
Eason MG, Kurose H, Holt BD, Raymond JR, Liggett SB. Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem. 1992;267:15795–801.
CAS
PubMed
Google Scholar
Kimura TE, Duggirala A, Smith MC, White S, Sala-Newby GB, Newby AC, et al. The hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. J Mol Cell Cardiol. 2016;90:1–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohnaka K, Numaguchi K, Yamakawa T, Inagami T. Induction of cyclooxygenase-2 by angiotensin II in cultured rat vascular smooth muscle cells. Hypertension. 2000;35:68–75.
Article
CAS
PubMed
Google Scholar
Hunter T. Protein kinases and phosphatases: the yin and Yang of protein phosphorylation and signaling. Cell. 1995;80:225–36.
Article
CAS
PubMed
Google Scholar
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.
Article
CAS
PubMed
Google Scholar
Muir D, Varon S, Manthorpe M. An enzyme-linked immunosorbent assay for bromodeoxyuridine incorporation using fixed microcultures. Anal Biochem. 1990;185:377–82.
Article
CAS
PubMed
Google Scholar
Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L. Cell Viability Assays. 2013 May 1 [Updated 2016 Jul 1]. In: Sittampalam GS, Coussens NP, Brimacombe K, et al., editors. Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK144065/.
Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000;351:95–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feala JD, Cortes J, Duxbury PM, McCulloch AD, Piermarocchi C, Paternostro G. Statistical properties and robustness of biological controller-target networks. PLoS One. 2012;7:e29374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran TP, Ong E, Hodges AP, Paternostro G, Piermarocchi C. Prediction of kinase inhibitor response using activity profiling, in vitro screening, and elastic net regression. BMC Syst Biol. 2014;8:74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lipskaia L, Pourci M-L, Deloménie C, Combettes L, Goudounèche D, Paul J-L, et al. Phosphatidylinositol 3-kinase and calcium-activated transcription pathways are required for VLDL-induced smooth muscle cell proliferation. Circ Res. 2003;92:1115–22.
Article
CAS
PubMed
Google Scholar
Kudryavtseva O, Aalkjaer C, Matchkov VV. Vascular smooth muscle cell phenotype is defined by Ca2+−dependent transcription factors. FEBS J. 2013;280:5488–99.
Article
CAS
PubMed
Google Scholar
Li S, Sun N. Regulation of intracellular Ca2+ and calcineurin by NO/PKG in proliferation of vascular smooth muscle cells. Acta Pharmacol Sin. 2005;26:323–8.
Article
CAS
PubMed
Google Scholar
Dumler I, Stepanova V, Jerke U, Mayboroda OA, Vogel F, Bouvet P, et al. Urokinase-induced mitogenesis is mediated by casein kinase 2 and nucleolin. Curr Biol. 1999;9:1468–76.
Article
CAS
PubMed
Google Scholar
Davis R, Pillai S, Lawrence N, Sebti S, Chellappan SP. TNF-α-mediated proliferation of vascular smooth muscle cells involves Raf-1-mediated inactivation of Rb and transcription of E2F1-regulated genes. Cell Cycle. 2012;11:109–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Zhou Y, Wang C, Zhao Y-L, Zhang Z-G, Fan D, et al. Src tyrosine kinase regulates angiotensin II-induced protein kinase Czeta activation and proliferation in vascular smooth muscle cells. Peptides. 2010;31:1159–64.
Article
CAS
PubMed
Google Scholar
Kim J, Ahn S, Rajagopal K, Lefkowitz RJ. Independent beta-arrestin2 and Gq/protein kinase Czeta pathways for ERK stimulated by angiotensin type 1A receptors in vascular smooth muscle cells converge on transactivation of the epidermal growth factor receptor. J Biol Chem. 2009;284:11953–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walcher D, Babiak C, Poletek P, Rosenkranz S, Bach H, Betz S, et al. C-peptide induces vascular smooth muscle cell proliferation: involvement of SRC-kinase, phosphatidylinositol 3-kinase, and extracellular signal-regulated kinase 1/2. Circ Res. 2006;99:1181–7.
Article
CAS
PubMed
Google Scholar
Jeremy J. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res. 1999;43:580–94.
Article
CAS
PubMed
Google Scholar
Waltenberger J, Uecker A, Kroll J, Frank H, Mayr U, Bjorge JD, et al. A dual inhibitor of platelet-derived growth factor beta-receptor and Src kinase activity potently interferes with motogenic and mitogenic responses to PDGF in vascular smooth muscle cells. A novel candidate for prevention of vascular remodeling. Circ Res. 1999;85:12–22.
Article
CAS
PubMed
Google Scholar
Yang P-S, Wang M-J, Jayakumar T, Chou D-S, Ko C-Y, Hsu M-J, et al. Antiproliferative activity of Hinokitiol, a Tropolone derivative, is mediated via the inductions of p-JNK and p-PLCγ1 signaling in PDGF-BB-stimulated vascular smooth muscle cells. Molecules. 2015;20:8198–212.
Article
CAS
PubMed
Google Scholar
Nagayama K, Kyotani Y, Zhao J, Ito S, Ozawa K, Bolstad FA, et al. Exendin-4 prevents vascular smooth muscle cell proliferation and migration by Angiotensin II via the inhibition of ERK1/2 and JNK signaling pathways. PLoS One. 2015;10:e0137960.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu L, Huang X, Huang K, Gui C, Huang Q, Wei B. Ligustrazine attenuates the platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells by interrupting extracellular signal-regulated kinase and P38 mitogen-activated protein kinase pathways. Mol Med Rep. 2015;12:705–11.
CAS
PubMed
Google Scholar
Chen Z, Cai Y, Zhang W, Liu X, Liu S. Astragaloside IV inhibits platelet-derived growth factor-BB-stimulated proliferation and migration of vascular smooth muscle cells via the inhibition of p38 MAPK signaling. Exp Ther Med. 2014;8:1253–8.
CAS
PubMed
PubMed Central
Google Scholar
Shen Y-J, Zhu X-X, Yang X, Jin B, Lu J-J, Ding B, et al. Cardamonin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and migration by downregulating p38 MAPK, Akt, and ERK phosphorylation. J Nat Med. 2014;68:623–9.
Article
CAS
PubMed
Google Scholar
Zhang Y, Jiang Z, Li L, Zhou Y, Song Z, Shu M. Geminin interference facilitates vascular smooth muscle cell proliferation by upregulation of CDK-1. Cardiovasc Drugs Ther. 2014;28:407–14.
Article
CAS
PubMed
Google Scholar
Schad JF, Meltzer KR, Hicks MR, Beutler DS, Cao TV, Standley PR. Cyclic strain upregulates VEGF and attenuates proliferation of vascular smooth muscle cells. Vasc Cell. 2011;3:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terano T, Tanaka T, Tamura Y, Kitagawa M, Higashi H, Saito Y, et al. Eicosapentaenoic acid and docosahexaenoic acid inhibit vascular smooth muscle cell proliferation by inhibiting phosphorylation of Cdk2-cyclinE comp... - PubMed - NCBI. Biochem Biophys Res Commun. 1999;254:502–6.
Article
CAS
PubMed
Google Scholar
Zhang X, Liu L, Chen C, Chi Y-L, Yang X-Q, Xu Y, et al. Interferon regulatory factor-1 together with reactive oxygen species promotes the acceleration of cell cycle progression by up-regulating the cyclin E and CDK2 genes during high glucose-induced proliferation of vascular smooth muscle cells. Cardiovasc Diabetol. 2013;12:147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kristof AS, Pacheco-Rodriguez G, Schremmer B, Moss J. LY303511 (2-piperazinyl-8-phenyl-4H-1-benzopyran-4-one) acts via phosphatidylinositol 3-kinase-independent pathways to inhibit cell proliferation via mammalian target of rapamycin (mTOR)- and non-mTOR-dependent mechanisms. J Pharmacol Exp Ther. 2005;314:1134–43.
Article
CAS
PubMed
Google Scholar
Goncharova EA, Ammit AJ, Irani C, Carroll RG, Eszterhas AJ, Panettieri RA, et al. PI3K is required for proliferation and migration of human pulmonary vascular smooth muscle cells. Am J Phys Lung Cell Mol Phys. 2002;283:L354–63.
CAS
Google Scholar
Silfani TN, Freeman EJ. Phosphatidylinositide 3-kinase regulates angiotensin II-induced cytosolic phospholipase A2 activity and growth in vascular smooth muscle cells. Arch Biochem Biophys. 2002;402:84–93.
Article
CAS
PubMed
Google Scholar
Saward L, Zahradka P. Angiotensin II activates phosphatidylinositol 3-kinase in vascular smooth muscle cells. Circ Res. 1997;81:249–57.
Article
CAS
PubMed
Google Scholar
Freeman EJ, Sheakley ML, Clements RJ. Angiotensin II-dependent growth of vascular smooth muscle cells requires transactivation of the epidermal growth factor receptor via a cytosolic phospholipase a(2)-mediated release of arachidonic acid. Arch Biochem Biophys. 2010;498:50–6.
Article
CAS
PubMed
Google Scholar
Rodríguez-Moyano M, Díaz I, Dionisio N, Zhang X, Avila-Medina J, Calderón-Sánchez E, et al. Urotensin-II promotes vascular smooth muscle cell proliferation through store-operated calcium entry and EGFR transactivation. Cardiovasc Res. 2013;100:297–306.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson JD, Pitcher JA. G protein-coupled receptor kinase 2 (GRK2) is a rho-activated scaffold protein for the ERK MAP kinase cascade. Cell Signal. 2013;25:2831–9.
Article
CAS
PubMed
Google Scholar
Savikko J, Rintala JM, Rintala S, Koskinen P. Epidermal growth factor receptor inhibition by erlotinib prevents vascular smooth muscle cell and monocyte-macrophage function in vitro. Transpl Immunol. 2015;32:175–8.
Article
CAS
PubMed
Google Scholar
Watanabe T, Pakala R, Katagiri T, Benedict CR. Serotonin potentiates angiotensin II--induced vascular smooth muscle cell proliferation. Atherosclerosis. 2001;159:269–79.
Article
CAS
PubMed
Google Scholar
Peppelenbosch MP. Kinome profiling. Science. 2012;2012:306798.
Google Scholar
Schutkowski M, Reineke U, Reimer U. Peptide arrays for Kinase profiling. Chembiochem. WILEY-VCH Verlag. 2005;6:513–21.
Article
CAS
PubMed
Google Scholar
Shigaki S, Yamaji T, Han X, Yamanouchi G, Sonoda T, Okitsu O, et al. A peptide microarray for the detection of protein kinase activity in cell lysate. Anal Sci. 2007;23:271–5.
Article
CAS
PubMed
Google Scholar
Ikebe M, Hartshorne DJ. Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem. 1985;260:10027–31.
CAS
PubMed
Google Scholar
Ikebe M, Hartshorne DJ, Elzinga M. Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J Biol Chem. 1986;261:36–9.
CAS
PubMed
Google Scholar
Niiro N, Ikebe M. Zipper-interacting protein kinase induces ca(2+)-free smooth muscle contraction via myosin light chain phosphorylation. J Biol Chem. 2001;276:29567–74.
Article
CAS
PubMed
Google Scholar
Moffat LD, Brown SBA, Grassie ME, Ulke-Lemée A, Williamson LM, Walsh MP, et al. Chemical genetics of zipper-interacting protein kinase reveal myosin light chain as a bona fide substrate in permeabilized arterial smooth muscle. J Biol Chem. 2011;286:36978–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng JT, Van Lierop JE, Sutherland C, Walsh MP. Ca2+−independent smooth muscle contraction. A novel function for integrin-linked kinase. J Biol Chem. 2001;276:16365–73.
Article
CAS
PubMed
Google Scholar
Wilson DP, Sutherland C, Borman MA, Deng JT, Macdonald JA, Walsh MP. Integrin-linked kinase is responsible for Ca2+−independent myosin diphosphorylation and contraction of vascular smooth muscle. Biochem J. 2005;392:641–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutherland C, Walsh MP. Myosin regulatory light chain diphosphorylation slows relaxation of arterial smooth muscle. J Biol Chem. 2012;287:24064–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol. 2009;21:140–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter T. The Croonian lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc Lond Ser B Biol Sci. 1998;353:583–605.
Article
CAS
Google Scholar
Friedman A, Perrimon N. Genetic screening for signal transduction in the era of network biology. Cell. 2007;128:225–31.
Article
CAS
PubMed
Google Scholar
Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, et al. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell. 1991;65:435–41.
Article
CAS
PubMed
Google Scholar
Sekiya F, Poulin B, Kim YJ, Rhee SG. Mechanism of tyrosine Phosphorylation and activation of Phospholipase C- 1: TYROSINE 783 PHOSPHORYLATION IS NOT SUFFICIENT FOR LIPASE ACTIVATION. J Biol Chem. 2004;279:32181–90.
Article
CAS
PubMed
Google Scholar
Marrero MB, Venema RC, Ma H, Ling BN, Eaton DC. Erythropoietin receptor-operated Ca2+ channels: activation by phospholipase C-gamma 1. Kidney Int. 1998;53:1259–68.
Article
CAS
PubMed
Google Scholar
Boudot C, Petitfrère E, Kadri Z, Chretien S, Mayeux P, Haye B, et al. Erythropoietin induces glycosylphosphatidylinositol hydrolysis. Possible involvement of phospholipase c-gamma(2). J Biol Chem. 1999;274:33966–72.
Article
CAS
PubMed
Google Scholar
Balagopalan L, Coussens NP, Sherman E, Samelson LE, Sommers CL. The LAT story: a tale of Cooperativity, coordination, and choreography. Cold Spring Harb Perspect Biol Cold Spring Harbor Lab. 2010;2:a005512.
Google Scholar
Law CL, Chandran KA, Sidorenko SP, Clark EA. Phospholipase C-gamma1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Mol Cell Biol. 1996;16:1305–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurosaki T, Maeda A, Ishiai M, Hashimoto A, Inabe K, Takata M. Regulation of the phospholipase C-gamma2 pathway in B cells. Immunol Rev. 2000;176:19–29.
Article
CAS
PubMed
Google Scholar
Cotecchia S, Kobilka BK, Daniel KW, Nolan RD, Lapetina EY, Caron MG, et al. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem. 1990;265:63–9.
CAS
PubMed
Google Scholar
Annerén C, Lindholm CK, Kriz V, Welsh M. The FRK/RAK-SHB signaling cascade: a versatile signal-transduction pathway that regulates cell survival, differentiation and proliferation. Curr Mol Med. 2003;3:313–24.
Article
PubMed
Google Scholar
Li F, Jiang Y, Zheng Q, Yang X, Wang S. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF. Biochem Biophys Res Commun. 2011;404:79–85.
Article
CAS
PubMed
Google Scholar
Wang S-Y, Li F-F, Zheng H, Yu K-K, Ni F, Yang X-M, et al. Rapid induction and activation of Tec tyrosine kinase in liver regeneration. J Gastroenterol Hepatol. 2006;21:668–73.
Article
CAS
PubMed
Google Scholar
Biswas P, Canosa S, Schoenfeld J, Schoenfeld D, Tucker A, Madri JA. PECAM-1 promotes beta-catenin accumulation and stimulates endothelial cell proliferation. Biochem Biophys Res Commun. 2003;303:212–8.
Article
CAS
PubMed
Google Scholar
Nickoloff BJ, Muller WA, Ratti CM, McDonnell SL CZ, Newman PJ, Berndt MC, Gorsky J, White GC, Paddock LS MW, Stockinger H, Gadd SJ, Eher R et al, Nickoloff BJ GC, BJ N, et al. PECAM-1 (CD31) is expressed on proliferating endothelial cells, Stromal spindle-shaped cells, and dermal Dendrocytes in Kaposi’s sarcoma. Arch Dermatol. American Medical Association; 1993;129:250.
Tanyong DI, Panichob P, Kheansaard W, Fucharoen S. Effect of tumor necrosis factor-alpha on erythropoietin and erythropoietin receptor-induced Erythroid progenitor cell proliferation in β-Thalassemia/hemoglobin E patients. Turkish J. Haematol Off J Turkish Soc Haematol. 2015;32:304–10.
Article
Google Scholar
Ogilvie M, Yu X, Nicolas-Metral V, Pulido SM, Liu C, Ruegg UT, et al. Erythropoietin stimulates proliferation and interferes with differentiation of Myoblasts. J Biol Chem. 2000;275:39754–61.
Article
CAS
PubMed
Google Scholar
Srinivasan D, Sims JT, Plattner R. Aggressive breast cancer cells are dependent on activated Abl kinases for proliferation, anchorage-independent growth and survival. Oncogene. 2008;27:1095–105.
Article
CAS
PubMed
Google Scholar
Mitra S, Beach C, Feng G-S, Plattner R. SHP-2 is a novel target of Abl kinases during cell proliferation. J Cell Sci. 2008;121:3335–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan S, An P, Zhang R, He X, Yin G, Min W. Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol Cell Biol. 2002;22:7512–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abassi YA, Rehn M, Ekman N, Alitalo K, Vuori K. p130Cas couples the tyrosine kinase Bmx/Etk with regulation of the actin cytoskeleton and cell migration. J Biol Chem. 2003;278:35636–43.
Article
CAS
PubMed
Google Scholar
Liu B, Barbosa-Sampaio H, Jones PM, Persaud SJ, Muller DS. The CaMK4/CREB/IRS-2 cascade stimulates proliferation and inhibits apoptosis of β-cells. PLoS One. 2012;7:e45711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ichinose K, Rauen T, Juang Y-T, Kis-Toth K, Mizui M, Koga T, et al. Cutting edge: calcium/Calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J Immunol. 2011;187:5500–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitworth H, Bhadel S, Ivey M, Conaway M, Spencer A, Hernan R, et al. Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen. PLoS One. 2012;7:e38950.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang F, Cao H, Xiao Q, Guo X, Zhuang Y, Zhang C, et al. Transcriptome analysis and Gene identification in the pulmonary artery of broilers with Ascites syndrome. PLoS One. 2016;11:e0156045.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lindner V, Reidy MA. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1991;88:3739–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson NE, Chao S, Lindner V, Reidy MA. Intimal smooth muscle cell proliferation after balloon catheter injury. The role of basic fibroblast growth factor. Am. J. Pathologica. 1992;140:1017–23.
CAS
Google Scholar
Jawien A, Bowen-Pope DF, Lindner V, Schwartz SM, Clowes AW. Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty. J Clin Invest. 1992;89:507–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grotendorst GR, Chang T, Seppä HE, Kleinman HK, Martin GR. Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J Cell Physiol. 1982;113:261–6.
Article
CAS
PubMed
Google Scholar
Satoh C, Fukuda N, Hu WY, Nakayama M, Kishioka H, Kanmatsuse K. Role of endogenous angiotensin II in the increased expression of growth factors in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2001;37:108–18.
Article
CAS
PubMed
Google Scholar
Ali S, Becker MW, Davis MG, Dorn GW. Dissociation of vasoconstrictor-stimulated basic fibroblast growth factor expression from hypertrophic growth in cultured vascular smooth muscle cells. Relevant roles of protein kinase C. Circ Res. 1994;75:836–43.
Article
CAS
PubMed
Google Scholar
New DC, Wong YH. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal. 2007;2:2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lappano R, Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov. 2011;10:47–60.
Article
CAS
PubMed
Google Scholar
Li B, Du T, Li H, Gu L, Zhang H, Huang J, et al. Signalling pathways for transactivation by dexmedetomidine of epidermal growth factor receptors in astrocytes and its paracrine effect on neurons. Br J Pharmacol. 2008;154:191–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harun-Or-Rashid M, Díaz-DelCastillo M, Galindo-Romero C, Hallböök F. Alpha2-adrenergic-agonist Brimonidine stimulates negative feedback and attenuates injury-induced Phospho-ERK and dedifferentiation of chicken Müller cells. Invest Ophthalmol Vis Sci. 2015;56:5933–45.
Article
CAS
PubMed
Google Scholar
Zwick E, Hackel PO, Prenzel N, Ullrich A. The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol Sci. 1999;20:408–12.
Article
CAS
PubMed
Google Scholar
Marshall C. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell Cell Press. 1995;80:179–85.
CAS
Google Scholar
Yang X, Zhu MJ, Sreejayan N, Ren J, Du M. Angiotensin II promotes smooth muscle cell proliferation and migration through release of heparin-binding epidermal growth factor and activation of EGF-receptor pathway. Mol Cell. 2005;20:263–70.
Article
CAS
Google Scholar
Li Y, Lévesque L-O, Anand-Srivastava MB. Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol. 2010;299:H1959–67.
Article
CAS
PubMed
Google Scholar
Zarnegar R. Regulation of HGF and HGFR gene expression. EXS. 1995;74:33–49.
CAS
PubMed
Google Scholar
Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol Nature Publishing Group. 2003;4:915–25.
Article
CAS
PubMed
Google Scholar
Salgia R. Role of c-met in cancer: emphasis on lung cancer. Semin Oncol NIH Public Access. 2009;36:S52–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
You W-K, McDonald DM. The hepatocyte growth factor/c-met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep. 2008;41:833–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer OM, Giordano S, Comoglio PM, Ullrich A. Reactive oxygen species mediate met receptor transactivation by G protein-coupled receptors and the epidermal growth factor receptor in human carcinoma cells. J Biol Chem. 2004;279:28970–8.
Article
CAS
PubMed
Google Scholar
Taher TE, Derksen PW, de Boer OJ, Spaargaren M, Teeling P, van der Wal AC, et al. Hepatocyte growth factor triggers signaling cascades mediating vascular smooth muscle cell migration. Biochem Biophys Res Commun. 2002;298:80–6.
Article
CAS
PubMed
Google Scholar
Ma H, Calderon TM, Kessel T, Ashton AW, Berman JW. Mechanisms of hepatocyte growth factor-mediated vascular smooth muscle cell migration. Circ Res. 2003;93:1066–73.
Article
CAS
PubMed
Google Scholar
Nakatsu MN, Sainson RCA, Pérez-del-Pulgar S, Aoto JN, Aitkenhead M, Taylor KL, et al. VEGF121 and VEGF165 regulate blood vessel diameter through vascular endothelial growth factor receptor 2 in an in vitro angiogenesis model. Lab Investig Nature Publishing Group. 2003;83:1873–85.
Article
CAS
PubMed
Google Scholar
Meyer RD, Rahimi N. Comparative structure-function analysis of VEGFR-1 and VEGFR-2: what have we learned from chimeric systems? Ann N Y Acad Sci. 2003;995:200–7.
Article
CAS
PubMed
Google Scholar
Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456:809–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardús A, Parisi E, Gallego C, Aldea M, Fernández E, Valdivielso JM, et al. 1,25-Dihydroxyvitamin D3 stimulates vascular smooth muscle cell proliferation through a VEGF-mediated pathway. Kidney Int. Elsevier. 2006;69:1377–84.
Article
PubMed
CAS
Google Scholar
Parenti A, Brogelli L, Filippi S, Donnini S, Ledda F, Buschmann I, et al. Effect of hypoxia and endothelial loss on vascular smooth muscle cell responsiveness to VEGF-A: role of flt-1/VEGF-receptor-1. Cardiovasc Res. 2002;55:201–12.
Article
CAS
PubMed
Google Scholar
Chandra A, Angle N. Vascular endothelial growth factor stimulates a novel calcium-signaling pathway in vascular smooth muscle cells. Surgery. 2005;138:780–7.
Article
PubMed
Google Scholar
Fredriksson JM, Lindquist JM, Bronnikov GE, Nedergaard J. Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a beta -adrenoreceptor/cAMP/protein kinase a pathway involving Src but independently of Erk1/2. J Biol Chem. 2000;275:13802–11.
Article
CAS
PubMed
Google Scholar
Muthig V, Gilsbach R, Haubold M, Philipp M, Ivacevic T, Gessler M, et al. Upregulation of soluble vascular endothelial growth factor receptor 1 contributes to angiogenesis defects in the placenta of 2B-Adrenoceptor deficient mice. Circ Res. 2007;101:682–91.
Article
CAS
PubMed
Google Scholar
Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006;39:469–78.
CAS
PubMed
Google Scholar
Lee MW, Severson DL. Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. Am J Phys. 1994;267:C659–78.
CAS
Google Scholar
Khalil RA. Protein Kinase C inhibitors as modulators of vascular function and their application in vascular disease. Pharmaceuticals (Basel). 2013;6:407–39.
Article
CAS
Google Scholar
Khalil RA. Chapter 6: protein Kinase C. Regul. Vasc. Smooth muscle Funct. Morgan & Claypool Life Sciences: San Rafael; 2010.
Google Scholar
Wang Y, Yan T, Wang Q, Wang W, Xu J, Wu X, et al. PKC-dependent extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on AngiotensinII-induced proliferation of vascular smooth muscle cells. Biochem Biophys Res Commun. 2008;375:151–5.
Article
CAS
PubMed
Google Scholar
Molnar P, Perrault R, Louis S, Zahradka P. The cyclic AMP response element-binding protein (CREB) mediates smooth muscle cell proliferation in response to angiotensin II. J Cell Commun Signal. 2014;8:29–37.
Article
PubMed
Google Scholar
Ma J, Feng Y, Li Z, Tang C. The effect of adrenomedullin and proadrenomedullin N-terminal 20 peptide on angiotensin II induced vascular smooth muscle cell proliferation. Iran J Basic Med Sci. 2016;19:49–54.
PubMed
PubMed Central
Google Scholar
Yang J, Han Y, Sun H, Chen C, He D, Guo J, et al. (−)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings. J Agric Food Chem. 2011;59:11483–90.
Article
CAS
PubMed
Google Scholar
Liou S-F, Yeh J-L, Liang J-C, Chiu C-C, Lin Y-T, Chen I-J. Inhibition of mitogen-mediated proliferation of rat vascular smooth muscle cells by labedipinedilol-a through PKC and ERK 1/2 pathway. J Cardiovasc Pharmacol. 2004;44:539–51.
Article
CAS
PubMed
Google Scholar
Stäuble B, Boscoboinik D, Azzi A. Purification and kinetic properties of protein kinase C from cultured smooth muscle cells. Biochem Mol Biol Int. 1993;29:203–11.
PubMed
Google Scholar
Chang C-C, Lee J-J, Chiang C-W, Jayakumar T, Hsiao G, Hsieh C-Y, et al. Inhibitory effect of PMC, a potent hydrophilic α-tocopherol derivative, on vascular smooth muscle cell proliferation: the pivotal role of PKC-α translocation. Pharm Biol. 2010;48:938–46.
Article
CAS
PubMed
Google Scholar
Li L, Gao T, He S, Xu G, Yang L. Effect of heparin-derived oligosaccharide on vascular smooth muscle cell proliferation through inhibition of PKC-alpha expression. Acta Pharm Sin. 2012;47:993–1000.
CAS
Google Scholar
Liu B, Ryer EJ, Kundi R, Kamiya K, Itoh H, Faries PL, et al. Protein kinase C-delta regulates migration and proliferation of vascular smooth muscle cells through the extracellular signal-regulated kinase 1/2. J Vasc Surg. 2007;45:160–8.
Article
PubMed
PubMed Central
Google Scholar
Fukumoto S, Nishizawa Y, Hosoi M, Koyama H, Yamakawa K, Ohno S, et al. Protein Kinase C delta inhibits the proliferation of vascular smooth muscle cells by suppressing G1 Cyclin expression. J Biol Chem. 1997;272:13816–22.
Article
CAS
PubMed
Google Scholar
Peppel K, Jacobson A, Huang X, Murray JP, Oppermann M, Freedman NJ. Overexpression of G protein-coupled receptor kinase-2 in smooth muscle cells attenuates mitogenic signaling via G protein-coupled and platelet-derived growth factor receptors. Circulation. 2000;102:793–9.
Article
CAS
PubMed
Google Scholar
Peppel K, Zhang L, Huynh TTT, Huang X, Jacobson A, Brian L, et al. Overexpression of G protein-coupled receptor kinase-2 in smooth muscle cells reduces neointimal hyperplasia. J Mol Cell Cardiol. 2002;34:1399–409.
Article
CAS
PubMed
Google Scholar
Heck DA, Bylund DB. Mechanism of down-regulation of alpha-2 adrenergic receptor subtypes. J Pharmacol Exp Ther. 1997;282:1219–27.
CAS
PubMed
Google Scholar
Li W, Ai N, Wang S, Bhattacharya N, Vrbanac V, Collins M, et al. GRK3 is essential for metastatic cells and promotes prostate tumor progression. Proc Natl Acad Sci U S A. 2014;111:1521–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sang M, Hulsurkar M, Zhang X, Song H, Zheng D, Zhang Y, et al. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells. Oncotarget. 2016;7:45171–85.
PubMed
PubMed Central
Google Scholar
Sayeski PP, Ali MS. The critical role of c-Src and the Shc/Grb2/ERK2 signaling pathway in angiotensin II-dependent VSMC proliferation. Exp Cell Res. 2003;287:339–49.
Article
CAS
PubMed
Google Scholar
Yao H-L, Gao F-H, Li Z-Z, Wu H-X, Xu M-D, Zhang Z, et al. Monocyte chemoattractant protein-1 mediates angiotensin II-induced vascular smooth muscle cell proliferation via SAPK/JNK and ERK1/2. Mol Cell Biochem. 2012;366:355–62.
Article
CAS
PubMed
Google Scholar
Velculescu VE. Essay: Amersham Pharmacia Biotech & Science prize. Tantalizing transcriptomes--SAGE and its use in global gene expression analysis. Science. 1999;286:1491–2.
Article
CAS
PubMed
Google Scholar
Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C, et al. Analysis of human transcriptomes. Nat Genet. 1999;23:387–8.
Article
CAS
PubMed
Google Scholar
Li T, Liu X, Liu D, Wang Z. Sensitive detection of protein kinase a activity in cell lysates by peptide microarray-based assay. Anal Chem. 2013;85:7033–7.
Article
CAS
PubMed
Google Scholar
Grötzinger C. Peptide microarrays for medical applications in autoimmunity, infection, and cancer. Methods Mol Biol. 2016;1352:213–21.
Article
PubMed