World Health Organization (WHO): Global Status Report on Noncommunicable Diseases. 2010, Geneva, Switzerland: WHO:2011, [http://whqlibdoc.who.int/publications/2011/9789240686458_eng.pdf. Accessed April 4, 2012], —Description of the Global Burden of NCDs, Their Risk Factors and Determinants
Google Scholar
Duarte C, Becker S, Jamshidi N, Thiele I, Mo M, Vo T, Srivas R, Palsson B: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Procl Natl Acad Sci. 2007, 104: 1777-1782. 10.1073/pnas.0610772104.
Google Scholar
Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I: The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol. 2007, 3: 135-
Google Scholar
Gille C, Bölling C, Hoppe A, Bulik S, Hoffmann S, Hübner K, Karlstädt A, Ganeshan R, König M, Rother K, Weidlich M, Behre J, Holzhütter H: HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol Syst Biol. 2010, 6: 1-13.
Google Scholar
Holzhütter H: The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem. 2004, 271: 2905-2922. 10.1111/j.1432-1033.2004.04213.x.
Google Scholar
Shlomi T, Cabili M, Herrgård M, Palsson B, Ruppin E: Network-based prediction of human tissue-specific metabolism. Nature Biotechnol. 2008, 26: 1003-1010. 10.1038/nbt.1487.
Google Scholar
Becker S, Feist A, Mo M, Hannum G, Palsson B, Herrgård M: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc. 2007, 2: 727-338. 10.1038/nprot.2007.99.
Google Scholar
Mo M, Palsson B, Herrgård M: Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol. 2009, 3: 37-10.1186/1752-0509-3-37.
Google Scholar
Neely J, Morgan H: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974, 36: 413-459. 10.1146/annurev.ph.36.030174.002213.
Google Scholar
Doenst T, Goodwin G, Cedars A, Wang M, Stepkowski S, Taegtmeyer H: Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism. 2001, 50: 1083-1090. 10.1053/meta.2001.25605.
Google Scholar
Foryst-Ludwig A, Kreissl M, Sprang C, Thalke B, Böhm C, Benz V, Gürgen D, Dragun D, Schubert C, Mai K, Stawowy P, Spranger J, Regitz-Zagrosek V, Unger T, Kintscher U: Sex differences in physiological cardiac hypertrophy are associated with exercise-mediated changes in energy substrate availability. Am J Physiol Heart Circ Physiol. 2011, 301: H115-H122. 10.1152/ajpheart.01222.2010.
Google Scholar
Jezkova J, Novakova O, Kolar F, Tvrzicka E, Neckar J, Novak F: Chronic hypoxia alters fatty acid composition of phospholipids in right ventricular mycoardium. Mol Cell Biochem. 2002, 232: 49-56. 10.1023/A:1014889115509.
Google Scholar
Pepe S, McLennan P: Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation. 2002, 105: 2303-2308. 10.1161/01.CIR.0000015604.88808.74.
Google Scholar
Bordoni A, Lopez-Jimenez J, Spano C, Biagi P, Horrobin D, Hrelia D: Metabolism of linoleic and alpha-linolenic acids in cultured cardiomyocytes:effect of different N-6 and N-3 fatty acid supplementation. Mol Cell Biochem. 1996, 157: 217-222.
Google Scholar
Siscovick D, Raghunathan T, King I, Weinmann S, Wicklund K, Albright J, Bovbjerg V, Arbogast P, Smith H, Kushi L: Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA. 1995, 274: 1363-1367. 10.1001/jama.1995.03530170043030.
Google Scholar
Bei R, Frigiola A, Masuelli L, Marzocchella L, Tresoldi I, Modesti A, Galvano F: Effects of omega-3-polyunsaturated fatty acids on cardiac myocyte protection. Front Biosci. 2011, 16: 1833-1843. 10.2741/3825.
Google Scholar
Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin M, Morio B, Vidal H, Rieusset J: Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008, 118: 789-800.
Google Scholar
Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, Sun C, Liu X, Jefferson L, Xiong J, Lanoue K, Chang Z, Lynch C, Wang H, Shi Y: Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 2010, 12: 154-165. 10.1016/j.cmet.2010.07.003.
Google Scholar
Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero F: Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res. 2004, 94: 53-59. 10.1161/01.RES.0000109416.56608.64.
Google Scholar
Beyer K, Klingenberg M: ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry. 1985, 24: 3821-386. 10.1021/bi00336a001.
Google Scholar
Acehan D, Malhota A, Xu Y, Ren M, Stokes D, Schlame M: Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J. 2011, 100: 2184-2192. 10.1016/j.bpj.2011.03.031.
Google Scholar
Stankiewics-Choroszucha B, Gorski J: Effect of substrate supply and beta-adrenergic blockage on heart glycogen and triglyceride utilization during exercise in the rat. Eur J Appl Physiol Occup Physiol. 1980, 43: 11-7. 10.1007/BF00421350.
Google Scholar
Smith A, Robinson A: A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC Syst Biol. 2011, 5: 102-10.1186/1752-0509-5-102.
Google Scholar
Vo T, Greenberg H, Palsson B: Reconstruction and Functional Characterization of the Human Mitochondrial Metabolic Network Based on Proteomic and Biochemical Data. J Biol Chem. 2004, 279: 39532-39540. 10.1074/jbc.M403782200.
Google Scholar
Zhao Y, Huang J: Reconstruction and analysis of the human heart-specific metabolic network based on transcriptome and proteome data. Biochem Biophys Res Commun. 2011, 415: 450-454. 10.1016/j.bbrc.2011.10.090.
Google Scholar
Fahy E, Subramaniam S, Murphy R, Nishijima M, Raetz C, Shimizu T, Spener F, van Meer, Wakelam M, Dennis E: Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009, 50: S9-S14.
Google Scholar
Wishart D, Knox C, Guo A, Eisner R, Young N, Gautam B, Hau D, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz J, Lim E, Sobsey C, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel H, Forsythe I: HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37: D603-D610. 10.1093/nar/gkn810.
Google Scholar
Nascimben L, Ingwall JS, Lorell B, Piz I, Schultz V, Tornheim K, Tian R: Mechanisms for increased glycolysis in the hypertophied rat heart. Hypertension. 2004, 44: 662-667. 10.1161/01.HYP.0000144292.69599.0c.
Google Scholar
Depre C, Rider M, Hue L: Mechanisms of control of heart glycolysis. Eur J Biochem. 1998, 258: 277-290. 10.1046/j.1432-1327.1998.2580277.x.
Google Scholar
Bublitz C, Steavenson S: The pentose phosphate pathway in the endoplasmic reticulum. J Biol Chem. 1988, 26: 12849-12853.
Google Scholar
Severin S, Stepanova N: Interrelationship between glycolysis and the anaerobic part of the pentose phosphate pathway of carbohydrate metabolism in the myocardium. Adv Enzyme Regul. 1980, 19: 235-255.
Google Scholar
Puisac B, Arnedo M, Casale C, Ribate M, Castiella T, Ramos F, Ribes A, Pérez-Cerdá C, Casals N, Hegardt F, Pié J: Differential HMG-CoA lyase expression in human tissues provides clues about 3-hydroxy-3-methylglutaric aciduria. J Inherit Metab Dis. 2010, 33: 405-410. 10.1007/s10545-010-9097-3.
Google Scholar
Avogaro A, Nosadini R, Doria A, Fioretto P, Velussi M, Vigorito C, Sacca L, Toffolo G, Cobelli C, Trevisan R: Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am J Physiol Endocrinol Metab. 1990, 258: E606-E618.
Google Scholar
Hasin Y, Shimoni Y, Stein O, Stein Y: Effect of cholesterol depletion on the electrical activity of rat heart myocytes in culture. J Mol Cell Cardiol. 1980, 12: 675-683. 10.1016/0022-2828(80)90098-X.
Google Scholar
Venter H, Genade S, Mouton R, Huisamen B, Harper I, Lochner A: Myocardial membrane cholesterol: effects of ischaemia. J Mol Cell Cardiol. 1991, 11: 1271-1286.
Google Scholar
Khairallah R, Sparagna G, Khanna N, O’Shea K, Hecker P, Kristian T, Fiskum G, Des Rosiers, Polster B, Stanley W: Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim Biophys Acta. 2010, 1797: 1555-1562. 10.1016/j.bbabio.2010.05.007.
Google Scholar
Miyazaki M, Jacobson M, Man W, Cohen P, Asilmaz E, Friedman J, Ntambi J: Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim Biophys Acta. 2010, 1797: 1555-1562. 10.1016/j.bbabio.2010.05.007.
Google Scholar
Osorio J, Stanley W, Linke A, Castellari M, Diep Q, Panchal A, Hintze T, Lopaschuk G, Recchia F: Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failureK. Circulation. 2002, 106: 606-612. 10.1161/01.CIR.0000023531.22727.C1.
Google Scholar
Goodwin G, Taegtmeyer H: Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am J Physiol. 1999, 277: E772-E777.
Google Scholar
Awan M, Saggerson E: Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J. 1993, 295: 61-66.
Google Scholar
Bester R, Lochner A: Sarcolemmal phospholipid fatty acid composition and permeability. Biochim Biophys Acta. 1988, 941: 176-186. 10.1016/0005-2736(88)90178-2.
Google Scholar
Stam H, Broekhoven-Schokker S, Hülsmann W: Characterization of mono-, di- and triacylglycerol lipase activities in the isolated rat heart. Biochimica et Biophysica Acta. 1986, 875: 76-86. 10.1016/0005-2760(86)90013-5.
Google Scholar
Ardail D, Privat J, Egret-Charlier M, Levrat C, Lerme F, Louisot P: Mitochondrial contact sites: lipid composition and dynamics. J Biol Chem. 1990, 265: 18797-18802.
Google Scholar
Hofgaard J, Banach K, Mollerup S, Jorgensen H, Olesen S, Holstein-Rathlou N, Nielsen M: Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes. Eur J Physiol. 2008, 457: 303-313. 10.1007/s00424-008-0538-x.
Google Scholar
Portois L, Peltier S, Sener A, Malaisse W, Carpentier Y: Perturbation of phospholipid and triacylglycerol fatty acid positional location in the heart of rats depleted of n-3 long-chain polyunsaturates. Nutr Res. 2008, 28: 51-57. 10.1016/j.nutres.2007.11.006.
Google Scholar
Dobrzyn P, Dobrzyn A, Miyazaki M, Ntambi J: Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice. J Lipid Res. 2010, 51: 2202-2210. 10.1194/jlr.M003780.
Google Scholar
Turoczi T, Chang V, Engelman R, Maulik N, Ho Y, Das D: Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol. 2003, 35: 695-704. 10.1016/S0022-2828(03)00117-2.
Google Scholar
Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner S, Sadoshima J: Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest. 2003, 112: 1395-1406.
Google Scholar
Mudge GJ, Mills RJ, Taegtmeyer H, Gorlin R, Lesch M: Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest. 1976, 58: 1185-1192. 10.1172/JCI108571.
Google Scholar
Dinkelborg L, Kinne R, Grieshaber M: Transport and metabolism of L-glutamate during oxygenation, anoxia, and reoxygenation of rat cardiac myocytes. Am J Physiol. 1996, 270: H1825-H1832.
Google Scholar
Kerner J, Hoppel C: Fatty acid import into mitochondria. Biochimica et Biophysica Acta. 2000, 1486: 1-17. 10.1016/S1388-1981(00)00044-5.
Google Scholar
Bremer J: Carnitine - Metabolism and functions. Physiol Rev. 1983, 63 (4): 1420-1480.
Google Scholar
Hoffmann F, Hashimoto A, Lee B, Rose A, Shohet R, Hoffmann P: Specific antioxidant selenoproteins are induced in the heart during hypertrophy. Arch Biochem Biophys. 2011, 512: 38-44. 10.1016/j.abb.2011.05.007.
Google Scholar
Caldarera C, Orlandini G, Casti A, Moruzzi G: Polyamine and nucleic acid metabolism in myocardial hypertrophy of the overloaded heart. J Mol Cell Cardiol. 1974, 6: 95-103. 10.1016/0022-2828(74)90013-3.
Google Scholar
Tantini B, Fiumana E, Cetrullo S, Pignatti C, Bonavita F, Shantz L, Giordano E, Muscari C, Flamigni F, Guarnieri C, Stefanelli C, Caldarera C: Downregulation of the ornithine decarboxylase/polyamine system inhibits angiotensin-induced hypertrophy of cardiomyocytes through the NO/cGMP-dependent protein kinase type-I pathway. J Mol Cell Cardiol. 2006, 40: 775-782. 10.1016/j.yjmcc.2006.03.002.
Google Scholar
Waldmüller S, Erdmann J, Binner P, Gelbrich G, Pankuweit S, Geier C, Timmermann B, Haremza J, Perrot A, Scheer S, Wachter R, Schulze-Waltrup N, Dermintzoglou A, Schönberger J, Zeh W, Jurmann B, Brodherr T, Börgel J, Farr M, Milting H, Blankenfeldt W, Reinhardt R, Ozcelik C, Osterziel K, Loeffler M, Maisch B, Regitz-Zagrosek V, Schunkert H, Scheffold T: Novel correlations between the genotype and the phenotype of hypertrophic and dilated cardiomyopathy: results from the German Competence Network Heart Failure. Eur J Heart Fail. 2011, 13: 1185-1192. 10.1093/eurjhf/hfr074.
Google Scholar
Cheng Y, Li W, McElfresh T, Chen X, Berthiaume J, Castel L, Yu X, Van Wagoner, Chandler M: Changes in myofilament proteins, but not calcium regulation, are associated with a high fat diet-induced improvement in contractile function in heart failure. Am J Physiol Heart Circ Physiol. 2011, 301: H1438-H1446. 10.1152/ajpheart.00440.2011.
Google Scholar
Russell R, Bergeron R, Shulman G, Young L: Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol. 1999, 277: H643-649.
Google Scholar
Fox A, Reed G, Meilman H, Silk B: Release of nucleosides from canine and human hearts as an index of prior ischemia. Am J Cardiol. 1979, 43: 52-58. 10.1016/0002-9149(79)90044-4.
Google Scholar
Reibel D, Rovetto M: Myocardial adenosine salvage rates and restoration of ATP content following ischemia. Am J Physiol. 1979, 237: H247-H252.
Google Scholar
Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara J, Quaini E, Di Loreto, Beltrami C, Krajewski S, Reed J, Anversa P: Apoptosis in the failing human heart. N Engl J Med. 1997, 336: 1131-1142. 10.1056/NEJM199704173361603.
Google Scholar
Achterberg P, Stroeve R, De Jong: Myocardial adenosine cycling rates during normoxia and under conditions of stimulated purine release. Biochem J. 1986, 235: 13-17.
Google Scholar
Brown A, Raeside D, Bowditch J, Dow J: Metabolism and salvage of adenine and hypoxanthine by myocytes isolated from mature rat heart. Biochim Biophys Acta. 1985, 845: 469-476. 10.1016/0167-4889(85)90213-7.
Google Scholar
Hatefi Y, Galante Y: Dehydrogenase and transhydrogenase properties of the soluble NADH dehydrogenase of bovine heart mitochondria. Proc Natl Acad Sci USA. 1977, 74: 846-850. 10.1073/pnas.74.3.846.
Google Scholar
Hsu C, Oka S, Shao D, Hariharan N, Sadoshima J: Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res. 2009, 105: 481-491. 10.1161/CIRCRESAHA.109.203703.
Google Scholar
Vockley J, Jenkinson C, Shukla H, Kern R, Grody W, Cederbaum S: Cloning and characterization of the human type II arginase gene. Genomics. 1996, 38: 118-123. 10.1006/geno.1996.0606.
Google Scholar
Heusch P, Aker S, Boengler K, Deindl E, Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, DiLisa F, Schulz R: Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/ nitrate production and protein S-nitrosylation. Am J Physiol Heart Circ Physiol. 2010, 299: H446-H453. 10.1152/ajpheart.01034.2009.
Google Scholar
Jerby L, Shlomi T, Ruppin E: Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol. 2010, 6: 401-
Google Scholar
Wu F, Zhang E, Zhang J, Bache R, Beard D: Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts. J Physiol. 2008, 586.17: 4193-4208.
Google Scholar
Taegtmeyer H, Hems R, Krebs H: Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980, 186: 701-711.
Google Scholar
Stanacev N, Stuhne-Sekalec L, Brookes K, Davidson J: Intermediary metabolism of phospholipids. The biosynthesis of phosphatidylglycerophosphate and phosphatidylglycerol in heart mitochondria. Biochim Biophys Acta. 1969, 176: 650-653. 10.1016/0005-2760(69)90236-7.
Google Scholar
Hatch G: Cardiolipin biosynthesis in the isolated heart. Biochem J. 1994, 297: 201-208.
Google Scholar
Rocquelin G, Guenot L, Justrabo E: Fatty acid composition of human heart phospholipids: data from 53 biopsy specimens. J Mol Cell Cardiol. 1985, 17: 769-773. 10.1016/S0022-2828(85)80038-9.
Google Scholar
Rocquelin G, Guenot L, Astorg P, David M: Phospholipid content and fatty acid composition of human heart. Lipids. 1989, 24: 775-780. 10.1007/BF02544583.
Google Scholar
Goodwin G, Taegtmeyer H: [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway. Am J Physiol. 2001, 280: E502-E508.
Google Scholar
Ohno Y, Suto S, Yamanaka M, Mizutani Y, Mitsutake S, Igarashib Y, Sassaa T, Kiharaa A: ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. PNAS. 2010, 107: 18439-18444. 10.1073/pnas.1005572107.
Google Scholar
Henning S, Wambolt R, Schönekess B, Lopaschuk G, Allard M: Contribution of glycogen to aerobic myocardial glucose utilization. Circulation. 1996, 93: 1459-1555. 10.1161/01.CIR.93.7.1459.
Google Scholar
Hoffmann S, Hoppe A, Holzhütter H: Prunnig genome-scale metabolic models to consistent ad functionem networks. Genome Informatics. 2007, 18: 308-319.
Google Scholar
Niklas J, Heinzle E: Metabolic Flux Analysis in Systems Biology of Mammalian Cells. Adv Biochem Eng Biotechnol. 2012, 127: 109-132.
Google Scholar
Sauer U: Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol. 2006, 2: 62-
Google Scholar
Hoffmann S, Holzhütter H: Uncovering metabolic objectives pursued by changes of enzyme levels. Ann N Y Acad Sci. 2009, 1158: 57-70. 10.1111/j.1749-6632.2008.03753.x.
Google Scholar
Schuster S, Pfeiffer T, Fell D: Is maximization of molar yield in metabolic networks favoured by evolution?. J Theo Biol. 2007, 252: 497-504.
Google Scholar
Wentz A, Avignin D, Weber M, Cotter D, Doherty J, Kerns R, Nagarajan R, Reddy N, Sambandam N, Crwford P: Adaption of myocardial substrate metabolism to a ketogenic nutrient environment. J Bio Chem. 2010, 285: 24447-24456. 10.1074/jbc.M110.100651.
Google Scholar
Zhang J, Zhang W, Zou D, Chen G, Wan T, Zhang M, Cao X: Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem Biophys Res Commun. 2002, 297: 1033-1042. 10.1016/S0006-291X(02)02336-7.
Google Scholar
Ensenauer R, He M, Willard JM, Goetzman ES, Corydon TJ, Vandahl BB, Mohnsen AW, Isaya G, Vockley J: Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial-oxidation of unsaturated fatty acids. Biol Chem. 2005, 280: 32309-32316. 10.1074/jbc.M504460200.
Google Scholar
Nada M, Abdel-Aleem S, Schulz H: On the rate-limiting step in the beta-oxidation of polyunsaturated fatty acids in the heart. Biochim Biophys Acta. 1995, 1255: 244-250. 10.1016/0005-2760(94)00223-L.
Google Scholar
Boudina S, Sena S, Theobald H, Sheng X, Wright J, Hu X, Aziz S, Johnson J, Bugger H, Zaha V, Abel E: Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes. 2007, 56: 2457-2466. 10.2337/db07-0481.
Google Scholar
Su A, Cooke M, Ching K, Hakak Y, Walker J, Wiltshire T, Orth A, Vega R, Sapinoso L, Moqrich A, Patapoutian A, Hampton G, Schultz P, Hogenesch J: Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA. 2002, 99 (7): 4465-4470. 10.1073/pnas.012025199.
Google Scholar
Barrett T, Edgar R: Gene Expression Omnibus: Microarray data storage, submission, retrieval, and analysis. Methods Enzymol. 2006, 411: 352-369.
Google Scholar
Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, et al, Lawson D: Ensembl 2009. Nucl Acids Res. 2009, 37: D690-D697. 10.1093/nar/gkn828.
Google Scholar
Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28: 27-30. 10.1093/nar/28.1.27.
Google Scholar
Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söngen C, Stelzer MC, Thiele J, Schomburg D: BRENDA, the enzyme information system in 2011. Nucleic Acids Res. 2011, 39: 670-676. 10.1093/nar/gkq1089.
Google Scholar
UniProt Consortium: Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 2011, 39: D214-D219.
Google Scholar
Saier M, Tran C, Barabote R: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucl Acids Res. 2006, 34: D181-D186. 10.1093/nar/gkj001.
Google Scholar
Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L: Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007, 28: R39-
Google Scholar
Galeva N, Altermann M: Comparison of one-dimensional and two-dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: cytochromes P450 and other membrane proteins. Proteomics. 2002, 2: 713-722. 10.1002/1615-9861(200206)2:6<713::AID-PROT713>3.0.CO;2-M.
Google Scholar
Galeva N, Yakovlev D, Koen Y, Duzhak T, Altermann M: Direct identification of cytochrome P450 isozymes by matrix-assisted laser desorption/ionization time of flight-based proteomic approach. Drug Metab Dispos. 2003, 31: 351-355. 10.1124/dmd.31.4.351.
Google Scholar
Jankowski M, Henry C, Broadbelt L, Hatzimanikatis V: Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J. 2008, 95: 1487-1499. 10.1529/biophysj.107.124784.
Google Scholar
Gille C, Hoffmann S, Holzhütter H: METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks. BMC Syst Biol. 2007, 1: 5-10.1186/1752-0509-1-5.
Google Scholar
Levkau B, Schäfers M, Wohlschlaeger J, von Wnuck Lipinski K, Keul P, Hermann S, Kawaguchi N, Kirchhof P, Fabritz L, Stypmann J, Stegger L, Flögel U, Schrader J, Fischer J, Hsieh P, Ou Y, Mehrhof F, Tiemann K, Ghanem A, Matus M, Neumann J, Heusch G, Schmid K, Conway E, Baba H: Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation. 2008, 117: 1583-1593. 10.1161/CIRCULATIONAHA.107.734160.
Google Scholar
Armstrong A, Binkley P, Baker P, Myerkowitz P, Leier C: Quantitative investigation of cardiomyocyte hypertrophy and myocardial fibrosis over 6 years after cardiac transplantation. J Am Coll Cardiol. 1998, 32: 704-710. 10.1016/S0735-1097(98)00296-4.
Google Scholar
Hoppe A, Hoffmann S, Gerasch A, Holzhütter H: FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics. 2011, 12: 28-10.1186/1471-2105-12-28.
Google Scholar