Mahenthiralingam E, Baldwin A, Dowson CG: Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol. 2008, 104: 1539-1551. 10.1111/j.1365-2672.2007.03706.x
Article
CAS
PubMed
Google Scholar
Vanlaere E, Lipuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P: Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol. 2008, 58: 1580-1590. 10.1099/ijs.0.65634-0
Article
CAS
PubMed
Google Scholar
Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P: Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol. 2009, 59: 102-111. 10.1099/ijs.0.001123-0
Article
CAS
PubMed
Google Scholar
Parke JL, Gurian-Sherman D: Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol. 2001, 39: 225-258. 10.1146/annurev.phyto.39.1.225
Article
CAS
PubMed
Google Scholar
Mahenthiralingam E, Baldwin A, Vandamme P: Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol. 2002, 51: 533-538.
Article
PubMed
Google Scholar
Mahenthiralingam E, Urban TA, Goldberg JB: The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol. 2005, 3: 144-156. 10.1038/nrmicro1085
Article
CAS
PubMed
Google Scholar
Mann T, Ben-David D, Zlotkin A, Shachar D, Keller N, Toren A, Nagler A, Smollan G, Barzilai A, Rahav G: An outbreak of Burkholderia cenocepacia bacteremia in immunocompromised oncology patients. Infection. 2010,
Google Scholar
Govan JR, Brown PH, Maddison J, Doherty CJ, Nelson JW, Dodd M, Greening AP, Webb AK: Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet. 1993, 342: 15-19. 10.1016/0140-6736(93)91881-L
Article
CAS
PubMed
Google Scholar
Martin DW, Mohr CD: Invasion and intracellular survival of Burkholderia cepacia. Infect Immun. 2000, 68: 24-29. 10.1128/IAI.68.1.24-29.2000
Article
PubMed Central
CAS
PubMed
Google Scholar
Vandamme P, Holmes B, Coenye T, Goris J, Mahenthiralingam E, LiPuma JJ, Govan JR: Burkholderia cenocepacia sp. nov.--a new twist to an old story. Res Microbiol. 2003, 154: 91-96. 10.1016/S0923-2508(03)00026-3
Article
PubMed
Google Scholar
Drevinek P, Holden MT, Ge Z, Jones AM, Ketchell I, Gill RT, Mahenthiralingam E: Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BMC Infect Dis. 2008, 8: 121- 10.1186/1471-2334-8-121
Article
PubMed Central
PubMed
Google Scholar
Dubarry N, Du W, Lane D, Pasta F: Improved electrotransformation and decreased antibiotic resistance of the cystic fibrosis pathogen Burkholderia cenocepacia strain J2315. Appl Environ Microbiol. 2010, 76: 1095-1102. 10.1128/AEM.02123-09
Article
PubMed Central
CAS
PubMed
Google Scholar
Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeno-Tarraga AM, Thomson NR, Bason N, Quail MA, Sharp S, et al.: The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009, 191: 261-277. 10.1128/JB.01230-08
Article
PubMed Central
CAS
PubMed
Google Scholar
Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI: Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother. 1998, 42: 2206-2214.
PubMed Central
CAS
PubMed
Google Scholar
Loutet SA, Flannagan RS, Kooi C, Sokol PA, Valvano MA: A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J Bacteriol. 2006, 188: 2073-2080. 10.1128/JB.188.6.2073-2080.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
Miller JM, Rhoden DL: Preliminary evaluation of Biolog, a carbon source utilization method for bacterial identification. J Clin Microbiol. 1991, 29: 1143-1147.
PubMed Central
CAS
PubMed
Google Scholar
Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology. 2003, 4: R45- 10.1186/gb-2003-4-7-r45
Article
Google Scholar
Lee DS, Burd H, Liu J, Almaas E, Wiest O, Barabasi AL, Oltvai ZN, Kapatral V: Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. J Bacteriol. 2009, 191: 4015-4024. 10.1128/JB.01743-08
Article
PubMed Central
CAS
PubMed
Google Scholar
Becker SA, Palsson BO: Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol. 2005, 5: 8- 10.1186/1471-2180-5-8
Article
PubMed Central
PubMed
Google Scholar
Heinemann M, Kummel A, Ruinatscha R, Panke S: In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng. 2005, 92: 850-864. 10.1002/bit.20663
Article
CAS
PubMed
Google Scholar
Kim HU, Kim TY, Lee SY: Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Mol Biosyst. 2010, 6: 339-348. 10.1039/b916446d
Article
CAS
PubMed
Google Scholar
Jamshidi N, Palsson BO: Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol. 2007, 1: 26- 10.1186/1752-0509-1-26
Article
PubMed Central
PubMed
Google Scholar
Raghunathan A, Reed J, Shin S, Palsson B, Daefler S: Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol. 2009, 3: 38- 10.1186/1752-0509-3-38
Article
PubMed Central
PubMed
Google Scholar
Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VA, Papin JA: Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol. 2008, 190: 2790-2803. 10.1128/JB.01583-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Eberl L: Quorum sensing in the genus Burkholderia. Int J Med Microbiol. 2006, 296: 103-110.
Article
CAS
PubMed
Google Scholar
Eberl L: From a local dialect to a common language. Chem Biol. 2006, 13: 803-804. 10.1016/j.chembiol.2006.07.007
Article
CAS
PubMed
Google Scholar
Sokol PA, Malott RJ, Riedel K, Eberl L: Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs. Future Microbiol. 2007, 2: 555-563. 10.2217/17460913.2.5.555
Article
CAS
PubMed
Google Scholar
Boon C, Deng Y, Wang LH, He Y, Xu JL, Fan Y, Pan SQ, Zhang LH: A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J. 2008, 2: 27-36. 10.1038/ismej.2007.76
Article
CAS
PubMed
Google Scholar
Deng Y, Boon C, Eberl L, Zhang LH: Differential modulation of Burkholderia cenocepacia virulence and energy metabolism by the quorum-sensing signal BDSF and its synthase. J Bacteriol. 2009, 191: 7270-7278. 10.1128/JB.00681-09
Article
PubMed Central
CAS
PubMed
Google Scholar
Ryan RP, McCarthy Y, Watt SA, Niehaus K, Dow JM: Intraspecies signaling involving the diffusible signal factor BDSF (cis-2-dodecenoic acid) influences virulence in Burkholderia cenocepacia. J Bacteriol. 2009, 191: 5013-5019. 10.1128/JB.00473-09
Article
PubMed Central
CAS
PubMed
Google Scholar
Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C: Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N(5)-oxygenase. Infect Immun. 1999, 67: 4443-4455.
PubMed Central
CAS
PubMed
Google Scholar
Farmer KL, Thomas MS: Isolation and characterization of Burkholderia cenocepacia mutants deficient in pyochelin production: pyochelin biosynthesis is sensitive to sulfur availability. J Bacteriol. 2004, 186: 270-277. 10.1128/JB.186.2.270-277.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Visser MB, Majumdar S, Hani E, Sokol PA: Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun. 2004, 72: 2850-2857. 10.1128/IAI.72.5.2850-2857.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Sajjan US, Sun L, Goldstein R, Forstner JF: Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J Bacteriol. 1995, 177: 1030-1038.
PubMed Central
CAS
PubMed
Google Scholar
Sajjan U, Ackerley C, Forstner J: Interaction of cblA/adhesin-positive Burkholderia cepacia with squamous epithelium. Cell Microbiol. 2002, 4: 73-86. 10.1046/j.1462-5822.2002.00171.x
Article
CAS
PubMed
Google Scholar
Sajjan U, Liu L, Lu A, Spilker T, Forstner J, LiPuma JJ: Lack of cable pili expression by cblA-containing Burkholderia cepacia complex. Microbiology. 2002, 148: 3477-3484.
Article
CAS
PubMed
Google Scholar
Tomich M, Herfst CA, Golden JW, Mohr CD: Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun. 2002, 70: 1799-1806. 10.1128/IAI.70.4.1799-1806.2002
Article
PubMed Central
CAS
PubMed
Google Scholar
Urban TA, Griffith A, Torok AM, Smolkin ME, Burns JL, Goldberg JB: Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect Immun. 2004, 72: 5126-5134. 10.1128/IAI.72.9.5126-5134.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Hutchison ML, Poxton IR, Govan JR: Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun. 1998, 66: 2033-2039.
PubMed Central
CAS
PubMed
Google Scholar
Kooi C, Corbett CR, Sokol PA: Functional analysis of the Burkholderia cenocepacia ZmpA metalloprotease. J Bacteriol. 2005, 187: 4421-4429. 10.1128/JB.187.13.4421-4429.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Kooi C, Subsin B, Chen R, Pohorelic B, Sokol PA: Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence. Infect Immun. 2006, 74: 4083-4093. 10.1128/IAI.00297-06
Article
PubMed Central
CAS
PubMed
Google Scholar
Kooi C, Sokol PA: Burkholderia cenocepacia zinc metalloproteases influence resistance to antimicrobial peptides. Microbiology. 2009, 155: 2818-2825. 10.1099/mic.0.028969-0
Article
CAS
PubMed
Google Scholar
Korbsrisate S, Tomaras AP, Damnin S, Ckumdee J, Srinon V, Lengwehasatit I, Vasil ML, Suparak S: Characterization of two distinct phospholipase C enzymes from Burkholderia pseudomallei. Microbiology. 2007, 153: 1907-1915. 10.1099/mic.0.2006/003004-0
Article
CAS
PubMed
Google Scholar
Tomich M, Griffith A, Herfst CA, Burns JL, Mohr CD: Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect Immun. 2003, 71: 1405-1415. 10.1128/IAI.71.3.1405-1415.2003
Article
PubMed Central
CAS
PubMed
Google Scholar
Engledow AS, Medrano EG, Mahenthiralingam E, LiPuma JJ, Gonzalez CF: Involvement of a plasmid-encoded type IV secretion system in the plant tissue watersoaking phenotype of Burkholderia cenocepacia. J Bacteriol. 2004, 186: 6015-6024. 10.1128/JB.186.18.6015-6024.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Markey KM, Glendinning KJ, Morgan JA, Hart CA, Winstanley C: Caenorhabditis elegans killing assay as an infection model to study the role of type III secretion in Burkholderia cenocepacia. J Med Microbiol. 2006, 55: 967-969. 10.1099/jmm.0.46618-0
Article
PubMed
Google Scholar
Ortega X, Hunt TA, Loutet S, Vinion-Dubiel AD, Datta A, Choudhury B, Goldberg JB, Carlson R, Valvano MA: Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol. 2005, 187: 1324-1333. 10.1128/JB.187.4.1324-1333.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Hunt TA, Kooi C, Sokol PA, Valvano MA: Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun. 2004, 72: 4010-4022. 10.1128/IAI.72.7.4010-4022.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
De Soyza A, Silipo A, Lanzetta R, Govan JR, Molinaro A: Chemical and biological features of Burkholderia cepacia complex lipopolysaccharides. Innate Immun. 2008, 14: 127-144. 10.1177/1753425908093984
Article
CAS
PubMed
Google Scholar
Parsons YN, Banasko R, Detsika MG, Duangsonk K, Rainbow L, Hart CA, Winstanley C: Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes. Arch Microbiol. 2003, 179: 214-223.
CAS
PubMed
Google Scholar
Silipo A, Molinaro A, Ierano T, De Soyza A, Sturiale L, Garozzo D, Aldridge C, Corris PA, Khan CM, Lanzetta R, Parrilli M: The complete structure and pro-inflammatory activity of the lipooligosaccharide of the highly epidemic and virulent gram-negative bacterium Burkholderia cenocepacia ET-12 (strain J2315). Chemistry. 2007, 13: 3501-3511. 10.1002/chem.200601406
Article
CAS
PubMed
Google Scholar
Ortega X, Silipo A, Saldias MS, Bates CC, Molinaro A, Valvano MA: Biosynthesis and structure of the Burkholderia cenocepacia K56-2 lipopolysaccharide core oligosaccharide: truncation of the core oligosaccharide leads to increased binding and sensitivity to polymyxin B. J Biol Chem. 2009, 284: 21738-21751. 10.1074/jbc.M109.008532
Article
PubMed Central
CAS
PubMed
Google Scholar
Vinion-Dubiel AD, Goldberg JB: Lipopolysaccharide of Burkholderia cepacia complex. J Endotoxin Res. 2003, 9: 201-213.
CAS
PubMed
Google Scholar
Ortega XP, Cardona ST, Brown AR, Loutet SA, Flannagan RS, Campopiano DJ, Govan JR, Valvano MA: A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability. J Bacteriol. 2007, 189: 3639-3644. 10.1128/JB.00153-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Chung HS, Raetz CRH: Identification and characterization of a 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) oxidase; KdoO. The FASEB Journal. 2010
Google Scholar
Kenna DT, Barcus VA, Langley RJ, Vandamme P, Govan JR: Lack of correlation between O-serotype, bacteriophage susceptibility and genomovar status in the Burkholderia cepacia complex. FEMS Immunol Med Microbiol. 2003, 35: 87-92. 10.1016/S0928-8244(02)00442-X
Article
CAS
PubMed
Google Scholar
Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA: Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun. 2005, 73: 4982-4992. 10.1128/IAI.73.8.4982-4992.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Williams P, Winzer K, Chan WC, Camara M: Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci. 2007, 362: 1119-1134. 10.1098/rstb.2007.2039
Article
PubMed Central
CAS
PubMed
Google Scholar
Baldwin A, Sokol PA, Parkhill J, Mahenthiralingam E: The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infect Immun. 2004, 72: 1537-1547. 10.1128/IAI.72.3.1537-1547.2004
Article
PubMed Central
CAS
PubMed
Google Scholar
Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Camara M, Williams P: The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol. 2007, 14: 87-96. 10.1016/j.chembiol.2006.11.014
Article
CAS
PubMed
Google Scholar
Dubeau D, Deziel E, Woods DE, Lepine F: Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol. 2009, 9: 263- 10.1186/1471-2180-9-263
Article
PubMed Central
PubMed
Google Scholar
Coenye T, Vandamme P, Govan JR, LiPuma JJ: Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol. 2001, 39: 3427-3436. 10.1128/JCM.39.10.3427-3436.2001
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilkinson S, Pitt T: Burkholderia (Pseudomonas) cepacia: Surface chemistry and typing methods. REV MED MICROBIOL. 1995, 6: 1-9.
Article
Google Scholar
Taylor CJ, Anderson AJ, Wilkinson SG: Phenotypic variation of lipid composition in Burkholderia cepacia: a response to increased growth temperature is a greater content of 2-hydroxy acids in phosphatidylethanolamine and ornithine amide lipid. Microbiology. 1998, 144 (Pt 7): 1737-1745.
Article
CAS
PubMed
Google Scholar
Gao JL, Weissenmayer B, Taylor AM, Thomas-Oates J, Lopez-Lara IM, Geiger O: Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol. 2004, 53: 1757-1770. 10.1111/j.1365-2958.2004.04240.x
Article
CAS
PubMed
Google Scholar
Harayama S, Bollinger J, Iino T, Hazelbauer GL: Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning. J Bacteriol. 1983, 153: 408-415.
PubMed Central
CAS
PubMed
Google Scholar
Stamm LV, Young NR, Frye JG, Hardham JM: Identification and sequences of the Treponema pallidum mglA and mglC genes. DNA Seq. 1996, 6: 293-298.
CAS
PubMed
Google Scholar
Koonin EV: Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol. 2003, 1: 127-136. 10.1038/nrmicro751
Article
CAS
PubMed
Google Scholar
Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, et al.: Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2003, 100: 14339-14344. 10.1073/pnas.2036282100
Article
PubMed Central
CAS
PubMed
Google Scholar
Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM: An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA. 2006, 103: 2833-2838. 10.1073/pnas.0511100103
Article
PubMed Central
CAS
PubMed
Google Scholar
Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M: Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992, 36: 1251-1275.
Article
CAS
PubMed
Google Scholar
Cronan JE, Waldrop GL: Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res. 2002, 41: 407-435. 10.1016/S0163-7827(02)00007-3
Article
CAS
PubMed
Google Scholar
Li SJ, Cronan JE: Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J Bacteriol. 1993, 175: 332-340.
PubMed Central
CAS
PubMed
Google Scholar
Abdel-Hamid AM, Cronan JE: Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli. J Bacteriol. 2007, 189: 369-376. 10.1128/JB.01373-06
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoder-Himes DR, Konstantinidis KT, Tiedje JM: Identification of potential therapeutic targets for Burkholderia cenocepacia by comparative transcriptomics. PLoS One. 2010, 5: e8724- 10.1371/journal.pone.0008724
Article
PubMed Central
PubMed
Google Scholar
Perumal D, Samal A, Sakharkar KR, Sakharkar MK: Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network. J Drug Target. 2010,
Google Scholar
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36: D901-906.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang L, Parente J, Harris SM, Woods DE, Hancock RE, Falla TJ: Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother. 2005, 49: 2921-2927. 10.1128/AAC.49.7.2921-2927.2005
Article
PubMed Central
CAS
PubMed
Google Scholar
Mookherjee N, Hancock RE: Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007, 64: 922-933. 10.1007/s00018-007-6475-6
Article
CAS
PubMed
Google Scholar
Loutet SA, Bartholdson SJ, Govan JR, Campopiano DJ, Valvano MA: Contributions of two UDP-glucose dehydrogenases to viability and polymyxin B resistance of Burkholderia cenocepacia. Microbiology. 2009, 155: 2029-2039. 10.1099/mic.0.027607-0
Article
CAS
PubMed
Google Scholar
Edwards JS, Covert M, Palsson BO: Metabolic modelling of microbes:the flux-balance approach. Environmental Microbiology. 2002, 4: 133-140. 10.1046/j.1462-2920.2002.00282.x
Article
PubMed
Google Scholar
Diez MS, Lam CM, Leprince A, dos Santos VA: (Re-)construction, characterization and modeling of systems for synthetic biology. Biotechnol J. 2009, 4: 1382-1391. 10.1002/biot.200900173
Article
CAS
PubMed
Google Scholar
Hertz-Fowler C, Peacock CS, Wood V, Aslett M, Kerhornou A, Mooney P, Tivey A, Berriman M, Hall N, Rutherford K, et al.: GeneDB: a resource for prokaryotic and eukaryotic organisms. Nucleic Acids Res. 2004, 32: D339-343. 10.1093/nar/gkh007
Article
PubMed Central
CAS
PubMed
Google Scholar
Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D: BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res. 2004, 32: D431-433. 10.1093/nar/gkh081
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M: From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006, 34: D354-357. 10.1093/nar/gkj102
Article
PubMed Central
CAS
PubMed
Google Scholar
Ren Q, Chen K, Paulsen IT: TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res. 2007, 35: D274-279. 10.1093/nar/gkl925
Article
PubMed Central
CAS
PubMed
Google Scholar
The universal protein resource (UniProt). Nucleic Acids Res. 2008, 36: D190-195.
Saier MH, Tran CV, Barabote RD: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 2006, 34: D181-186. 10.1093/nar/gkj001
Article
PubMed Central
CAS
PubMed
Google Scholar
Orth JD, Palsson BO: Systematizing the generation of missing metabolic knowledge. Biotechnol Bioeng. 2010, 107: 403-412. 10.1002/bit.22844
Article
PubMed Central
CAS
PubMed
Google Scholar
Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK, Herring CD, Bui OT, Knight EM, Fong SS, Palsson BO: Systems approach to refining genome annotation. Proc Natl Acad Sci USA. 2006, 103: 17480-17484. 10.1073/pnas.0603364103
Article
PubMed Central
CAS
PubMed
Google Scholar
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology. 2007, 3:
Google Scholar
Krejci E, Kroppenstedt RM: Defferentiation of Species Combined into the Burkholderia cepacia Complex and Related Taxa on the Basis of Their Fatty Acid Patterns. Journal of Clinical Microbiology. 2006, 44:
Google Scholar
Sousa SA, Ramos CG, Almeida F, Meirinhos-Soares L, Wopperer J, Schwager S, Eberl L, Leitao JH: Burkholderia cenocepacia J2315 acyl carrier protein: a potential target for antimicrobials' development?. Microb Pathog. 2008, 45: 331-336. 10.1016/j.micpath.2008.08.002
Article
CAS
PubMed
Google Scholar
Miller JH: Experiments in molecular genetics. 1972, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory
Google Scholar
Palmer KL, Aye LM, Whiteley M: Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007, 189: 8079-8087. 10.1128/JB.01138-07
Article
PubMed Central
CAS
PubMed
Google Scholar
Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S: Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol. 2006, 188: 8259-8271. 10.1128/JB.00740-06
Article
PubMed Central
CAS
PubMed
Google Scholar