Koeffler HP, Golde DW. Acute myelogenous leukemia: a human cell line responsive to colony-stimulating activity. Science. 1978; 200:1153–4.

Article
CAS
PubMed
Google Scholar

Epidemiology S, Program ERS. Research Data (1973-2012), National cancer institute, DCCPS, Surveillance research program, Surveillance systems branch. 2015. www.seer.cancer.gov. Accessed 10 Jan 2017.

Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C. Proposals for the classification of the acute leukaemias. french-american-british (fab) co-operative group. Br J Hematol. 1976; 33:451–8.

Article
CAS
Google Scholar

Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ, Wheatley K, Burnett AK, Goldstone AH. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (aml): analysis of 1065 patients entered into the united kingdom medical research council aml11 trial. Blood. 2001; 98:1312–9.

Article
CAS
PubMed
Google Scholar

Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Beau MML, Hellström-Lindberg E, Tefferi A, Bloomfield CD. The 2008 revision of the world health organization (who) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009; 114:937–51.

Article
CAS
PubMed
Google Scholar

Kimby E, Nygren P, Glimelius B. A systematic overview of chemotherapy effects in acute myeloid leukaemia. Acta Oncol. 2001; 40:231–52.

Article
CAS
PubMed
Google Scholar

Baron F, Storb R. Hematopoietic cell transplantation after reduced-intensity conditioning for older adults with acute myeloid leukemia in complete remission. Curr Opinions Hematol. 2007; 14:145–51.

Article
Google Scholar

Parker RS, Doyle FJ, Peppas NA. A model-based algorithm for blood glucose control in type i diabetic patients. IEEE Trans Biomed Eng. 1999; 46:148–57.

Article
CAS
PubMed
Google Scholar

Wong XW, Singh-Levett I, Hollingsworth LJ, Shaw GM, Hann CE, Lotz T, Lin J, Wong OS, Chase JG. A novel, model-based insulin and nutrition delivery controller for glycemic regulation in critically ill patients. Diabetes Technol Ther. 2006; 8:174–90.

Article
CAS
PubMed
Google Scholar

Dua P, Dua V, Pistikopoulos EN. Model based parametric control in anesthesia. Eur Symp Comput Aided Process Eng. 2005; 20:1015–20.

Google Scholar

Mendez JA, Torres S, Reboso JA, Jagannivas HR, Hepsiba D. Model-based controller for anesthesia automation. IEEE Int Conf Autom Sci Eng. 2009;379–84.

Jagannivas N, Hepsiba D. Control of anaesthesia concentration using model based controller. Int J Innov Res Technol. 2014; 1:237–44.

Google Scholar

Bogdan P, Jain S, Marculescu R. Pacemaker control of heart rate variability: A cyber physical system perspective. ACM Trans Embed Comput Syst (TECS); 12(1s):1–22.

Chakrabarty A, Pearce SM, R P Nelson J, Rundell AE. Treating acute myeloid leukemia via hsc transplantation: A preliminary study of multi-objective personalization strategies. Am Control Conf (ACC). 2013:3790–5.

Noble SL, Sherer E, Hannemann RE, Ramkrishna D, Vik T, Rundell AE. Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood acute lymphoblastic leukemia. J Theor Biol. 2010; 264:990–1002.

Article
PubMed
Google Scholar

Peng CA, Koller MR, Palsson BO. Unilineage model of hematopoiesis predicts self-renewal of stem and progenitor cells based on ex vivo growth data. Biotechnol Bioeng. 1996; 52:24–33.

Article
CAS
PubMed
Google Scholar

Scholz M, Engel C, Loeffler M. Modelling human granulopoiesis under poly-chemotherapy with g-csf support. J Math Biol. 2005; 50:397–439.

Article
CAS
PubMed
Google Scholar

Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, Nowak MA. Dynamics of chronic myeloid leukaemia. Nature. 2005; 435:1267–70.

Article
CAS
PubMed
Google Scholar

Marciniak-Czochra A, Stiehl T, Ho AD, Jager W, Wagner W. Modeling of asymmetric cell division in hematopoietic stem cells–regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 2009; 18:377–85.

Article
CAS
PubMed
Google Scholar

Ho T, Clermont G, Parker RS. A model of neutrophil dynamics in response to inflammatory and cancer chemotherapy challenges. Comput Chem Eng. 2013; 51:187–96.

Article
CAS
Google Scholar

Colijn C, Mackey MC. A mathematical model of hematopoiesis–i. periodic chronic myelogenous leukemia. J Theor Biol. 2005; 237:117–32.

Article
PubMed
Google Scholar

Colijn C, Mackey MC. A mathematical model of hematopoiesis–ii. cyclical neutropenia. J Theor Biol. 2005; 237:133–46.

Article
PubMed
Google Scholar

Manesso E, Teles J, Bryder D, Peterson C. Dynamical modelling of haematopoiesis: an integrated view over the system in homeostasis and under perturbation. J R Soc Interface. 2012;10(80).

Székely T, Burrage K, Mangel M, Bonsall MB. Stochastic dynamics of interacting haematopoietic stem cell niche lineages. PLOS Comput Biol. 2014; 10(9):e1003794.

Article
PubMed
PubMed Central
Google Scholar

Moore H, Li NK. A mathematical model for chronic myelogenous leukemia (cml) and t cell interaction. J Theor Biol. 2004; 227:513–23.

Article
PubMed
Google Scholar

DeConde R, Kim PS, Levy D, Lee PP. Post-transplantation dynamics of the immune response to chronic myelogenous leukemia. J Theor Biol. 2005; 236:39–59.

Article
CAS
PubMed
Google Scholar

Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Clonal selection and therapy resistance in acute leukemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J R Soc Interface. 2014; 11.

Takumi K, Garssen J, de Jonge R, de Jong W, Havelaar A. Release kinetics and cell trafficking in relation to bacterial growth explain the time course of blood neutrophils and monocytes during primary salmonella infection. Int Immunol. 2005; 17:85–93.

Article
CAS
PubMed
Google Scholar

Lahoz-Beneytez J, Elemans M, Zhang Y, Ahmed R, Salam A, Block M, Niederalt C, Asquith B, Macallan D. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood. 2016; 127:3431–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Craig M, Humphries AR, Mackey MC. A mathematical model of granulopoiesis incorporating the negative feedback dynamics and kinetics of g-csf/neutrophil binding and internalization. Bull Math Biol. 2016; 78(12):2304–57.

Article
CAS
PubMed
Google Scholar

Stiehl T, Ho A, Marciniak-Czochra A. The impact of cd34+ cell dose on engraftment after scts: personalized estimates based on mathematical modeling. Bone Marrow Transplant. 2014; 49(1):30–7.

Article
CAS
PubMed
Google Scholar

Stiehl T, Ho AD, Marciniak-Czochra A. Assessing hematopoietic (stem-) cell behavior during regenerative pressure. In: A Systems Biology Approach to Blood. New York: Springer: 2014. p. 347–67.

Google Scholar

Ostby I, Rusten LS, Kvalheim G, Grottum P. A mathematical model for reconstitution of granulopoiesis after high dose chemotherapy with autologous stem cell transplantation. J Math Biol. 2003; 47:101–36.

Article
PubMed
Google Scholar

Østby I, Kvalheim G, Rusten LS, Grottum P. Mathematical modeling of granulocyte reconstitution after high-dose chemotherapy with stem cell support: effect of post-transplant g-csf treatment. J Theor Biol. 2004; 231:69–83.

Article
PubMed
Google Scholar

Engel C, Scholz M, Loeffler M. A computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy. Blood. 2004; 104:2323–31.

Article
CAS
PubMed
Google Scholar

Stiehl T, Marciniak-Czochra A. Characterization of stem cells using mathematical models of multistage cell lineages. ath Comput Model. 2011; 53(7):1505–17.

Article
Google Scholar

Nakata Y, Getto P, Marciniak-Czochra A, Alarcón T. Stability analysis of multi-compartment models for cell production sytems. J Biol Dyn. 2012; 6:2–18.

Article
PubMed
Google Scholar

Getto P, Marciniak-Czochra A, Nakata Y, dM. Vivanco M. Global dynamics of two-compartment models for cell production systems with regulatory mechanisms. Math Biosci. 2013; 245:258–68.

Article
PubMed
Google Scholar

Metcalf D. Clonal analysis of proliferation and differentiation of paired daughter cells: action of granulocyte-macrophage colony-stimulating factor on granulocyte-macrophage precursors. Proc Natl Acad Sci. 1980; 77(9):5327–330.

Article
CAS
PubMed
PubMed Central
Google Scholar

Smith CW. Production, distribution, and fate of neutrophils In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, Caligiuri M, editors. Williams Hematology. New York: McGraw-Hill: 2015. Chap. 61.

Google Scholar

Douglas SD, Douglas AG. Production, distribution, and activation of monocytes and macrophages In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, Caligiuri M, editors. Williams Hematology. New York: McGraw-Hill: 2015. Chap. 68.

Google Scholar

Seet CS, Crooks GM. Lymphopoiesis In: Kaushansky K, Lichtman MA, Prchal JT, Levi MM, Press OW, Burns LJ, Caligiuri M, editors. Williams Hematology. New York: McGraw-Hill: 2015. Chap. 74.

Google Scholar

Klonz A, Wonigeit K, Pabst R, Westermann J. The marginal blood pool of the rat contains not only granulocytes, but also lymphocytes, nk-cells and monocytes: a second intravascular compartment, its cellular composition, adhesion molecule expression and interaction with the peripheral blood pool. Scandanavian J Immunol. 1996; 44:461–9.

Article
CAS
Google Scholar

Zhang CC, Lodish HF. Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol. 2008; 15:307–11.

Article
CAS
PubMed
PubMed Central
Google Scholar

Gonda TJ, D’Andrea RJ. Activating mutations in cytokine receptors: Implications for receptor function and role in disease. Blood. 1997; 89(2):355–69.

CAS
PubMed
Google Scholar

Mizuki M, Schw able J, Steura C, Choudhary C, Agrawal S, Sargin B, Steffen B, Matsumura I, Kanakura Y, B ohmer FD, M uller-Tidow C, Berdel WE, Serve H. Suppression of myeloid transcription factors and induction of stat response genes by aml-specific flt3 mutations. Blood. 2003; 101:3164–73.

Article
CAS
PubMed
Google Scholar

Kohl TM, Ellwart SSJW, Hiddemann W, Spiekermann K. Kit exon 8 mutations associated with core-binding factor (cbf)–acute myeloid leukemia (aml) cause hyperactivation of the receptor in response to stem cell factor. Blood. 2005; 105:3319–21.

Article
CAS
PubMed
Google Scholar

Levine RL, Huntly MLBJP, Loh ML, Beran M, Stoffregen E, Berger R, Clark JJ, Willis SG, Nguyen KT, Flores NJ, Estey E, Gattermann N, Armstrong S, Look AT, Griffin JD, Bernard OA, Heinrich MC, Gilliland DG, Druker B, Deininger MWN. The jak2v617f activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005; 106:3377–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci. 1971; 68(4):820–3.

Article
PubMed
PubMed Central
Google Scholar

Rubinow SI, Lebowitz JL. A mathematical model of the acute myeloblastic leukemic state in man. Biophys J. 1976; 16:897–910.

Article
CAS
PubMed
PubMed Central
Google Scholar

van den Akker E, Satchwell TJ, Pellegrin S, Daniels G, Toye AM. The majority of the in vitro erythroid expansion potential resides in cd34– cells, outweighing the contribution of cd34+ cells and significantly increasing the erythroblast yield from peripheral blood samples. Haematologica. 2010; 95.

Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Cell division patterns in acute myeloid leukemia stem-like cells determineclinical course:a model to predict patient survival. Cancer Res. 2015; 75:940–9.

Article
CAS
PubMed
Google Scholar

Shochat E, Rom-Kedar V, Segel LA. G-csf control of neutrophils dynamics in the blood. Bull Math Biol. 2007; 69:2299–338.

Article
CAS
PubMed
Google Scholar

Holländer GA, Widmer B, Burakoff SJ. loss of normal thymic repertoire selection and persistence of autoreactive t cells in graft vs host disease. J Immunol. 1994; 152:1609–17.

PubMed
Google Scholar

Kim PS, Lee PP, Levy D. Mini-transplants for chronic myelogenous leukemia: A modeling perspective. Biol Control Theory: Curr Challenges. 2007; 357:3–20.

Google Scholar

van Furth R, Dulk MMCD-D, Mattie H. Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med. 1973; 138(6):1314–30.

Article
CAS
PubMed
PubMed Central
Google Scholar

Whitelaw DM, Batho HF. The disribution of monocytes in the rat. Cell Tissue Kinet. 1972; 5:215–25.

CAS
PubMed
Google Scholar

Schmaier AH, Lazarus HM, (eds).Concise Guide to Hematology. West Sussex, UK: Wiley-Blackwell; 2012.

Google Scholar

Le T, Bhushan V, (eds).First Aid for the USMLE Step 1 2012. New York: McGraw-Hill Education; 2012.

Google Scholar

Morstyn G, Souza L, Keech J, Sheridan W, Campbell L, Alton N, Green M, Metcalf D, Fox R. Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet. 1988; 331(8587):667–72.

Article
Google Scholar

Harlan JM. Leukocyte-endothelial interactions. Blood. 1985; 65:513–25.

CAS
PubMed
Google Scholar

Jedrzejczak WW. Mobilization of the marginal pool of neutrophils with epinephrine. results in healthy persons, patients with neutropenias, patients with neutrophilias, and patients with changes in neutrophil count induced by cancer chemotherapy. Haematologica. 1979; 64:586–96.

CAS
PubMed
Google Scholar

Wäsch R, Reisser S, Hahn J, Bertz H, Engelhardt M, Kunzmann R, Veelken H, Holler E, Finke J. Rapid achievement of complete donor chimerism and low regimen-related toxicity after reduced conditioning with fludarabine, carmustine, melphalan and allogeneic transplantation. Bone Marrow Transplant. 2000; 26:243–50.

Article
PubMed
Google Scholar

Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv (CSUR). 1999; 13:264–323.

Article
Google Scholar

Amari S, Wu S. Improving support vector machine classifiers by modifying kernal functions. Neural Netw. 1999; 12:783–9.

Article
CAS
PubMed
Google Scholar

Zheng Y, Rundell A. Comparative study of parameter sensitivity analyses of the tcr-activated erk-ampk signaling pathway. IEEE Proc Syst Biol. 2006; 153:201–11.

Article
Google Scholar

Kinzer-Ursem TL, Linderman JJ. Both ligand- and cell-specific parameters control ligand agonism in a kinetic model of g protein–coupled receptor signaling. PLOS Comput Biol. 2007; 3(1):e6.

Article
PubMed
PubMed Central
Google Scholar

Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global uncertainty and sensitivity analysis in systems biology. Theor Biol. 2008; 254:178–96.

Article
Google Scholar

Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, et al. Transformation from committed progenitor to leukaemia stem cell initiated by mll–af9. Nature. 2006; 442(7104):818–22.

Article
CAS
PubMed
Google Scholar

Haeno H, Levine RL, Gilliland DG, Michor F. A progenitor cell origin of myeloid malignancies. Proc Natl Acad Sci U S A. 2009; 106:16616–21.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zeijlemaker W, Gratama JW, Schuurhuis G. Tumor heterogeneity makes aml a “moving target” for detection of residual disease. Cytom Part B: Clin Cytom. 2014; 86(1):3–14.

Article
CAS
Google Scholar

Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield CD. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the european leukemianet. Blood. 2010; 115:453–74.

Article
PubMed
Google Scholar

Schiffer CA, Gurbuxani S, Larson RA, Rosmarin AG. Clinical manifestations, pathologic features, and diagnosis of acute myeloid leukemia. Waltham. http://www.uptodate.com/contents/clinical-manifestations-pathologic-features-anddiagnosis-of-acute-myeloid-leukemia. Accessed 10 Jan 2017.

Burnett AK, Milligan D, Prentice AG, Goldstone AH, McMullin MF, Hills RK, Wheatley K. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007; 109(6):1114–24.

Article
CAS
PubMed
Google Scholar

Ashkenazi R, Gentry SN, Jackson TL. Pathways to tumorigenesis—modeling mutation acquisition in stem cells and their progeny. Neoplasia. 2008; 10(11):1170–111826.

Article
CAS
PubMed
PubMed Central
Google Scholar

Gentry S, Ashkenazi R, Jackson T. A maturity-structured mathematical model of mutation, acquisition in the absence of homeostatic regulation. Math Model Nat Phenom. 2009; 4(3):156–82.

Article
Google Scholar

Stiehl T, Marciniak-Czochra A. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenom. 2012; 7:166–202.

Article
Google Scholar

Cytarabine: Drug Information. Waltham. http://www.uptodate.com/contents/cytarabine-patient-drug-information. Accessed 10 Jan 2017.

Metcalf D. Hematopoietic cytokines. Blood. 2008; 111(2):485–91.

Article
CAS
PubMed
PubMed Central
Google Scholar

Maywald O, Buchheidt D, Bergmann J, Schoch C, Ludwig WD, Reiter A, Hastka J, Lengfelder E, Hehlmann R. Spontaneous remission in adult acute myeloid leukemia in association with systemic bacterial infection—case report and review of the literature. Ann Hematol. 2004; 83(3):189–94.

Article
CAS
PubMed
Google Scholar